AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Energetic Materials and Thin Film Explosives

Technology Benefits
Protects peripheral materials Regulates heat release Higher energy-storage Faster reactions
Technology Application
Military propellants and explosives Procedures in nanotechnology development
Detailed Technology Description
To create these energetic materials and thin film explosives, layered MIC deposition is accomplished through the contact of two different solid reactants, such as copper oxide and aluminum, which releases heat, resulting in a self-propagating reaction. This is done by sputtering in a vacuum chamber at a low pressure, helping in the reduction of water vapor content. Additionally, pure chemical inert gas is used for sputtering to provide higher purity and prevent water vapor contamination. Moreover, the thickness of the interfacial region over the entire surface area of reactants is less than 2 nanometers, providing higher reaction velocity.
*Abstract
This technology from the University of Central Florida reduces the presence of water vapor by nearly a hundred times, which allows for much thinner interfacial regions between the nanolayers, a higher stored energy density, and a reaction velocity that is five times faster than conventional designs. In addition, the controlled application of intense amounts of heat through regulated rapid heat release improves welding, soldering, and brazing, without damaging the peripheral materials.
*Principal Investigator

Name: Kevin R. Coffey, Ph.D.

Department:


Name: Edward Dein

Department:


Name: Bo Yao Ph.D.

Department:

Country/Region
USA

For more information, please click Here
Mobile Device