亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Energetic Materials and Thin Film Explosives

技術優勢
Protects peripheral materials Regulates heat release Higher energy-storage Faster reactions
技術應用
Military propellants and explosives Procedures in nanotechnology development
詳細技術說明
To create these energetic materials and thin film explosives, layered MIC deposition is accomplished through the contact of two different solid reactants, such as copper oxide and aluminum, which releases heat, resulting in a self-propagating reaction. This is done by sputtering in a vacuum chamber at a low pressure, helping in the reduction of water vapor content. Additionally, pure chemical inert gas is used for sputtering to provide higher purity and prevent water vapor contamination. Moreover, the thickness of the interfacial region over the entire surface area of reactants is less than 2 nanometers, providing higher reaction velocity.
*Abstract
This technology from the University of Central Florida reduces the presence of water vapor by nearly a hundred times, which allows for much thinner interfacial regions between the nanolayers, a higher stored energy density, and a reaction velocity that is five times faster than conventional designs. In addition, the controlled application of intense amounts of heat through regulated rapid heat release improves welding, soldering, and brazing, without damaging the peripheral materials.
*Principal Investigation

Name: Kevin R. Coffey, Ph.D.

Department:


Name: Edward Dein

Department:


Name: Bo Yao Ph.D.

Department:

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備