Search
  • Within this site
AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.
Back to search results

Hybrid Electromechanical Metamaterials for Optical and Electrical Devices


Technology Benefits

Decreases the complexity of circuit designs by working with pure frequencies Tunable resonant frequencies between 100 MHz and 2 THz Utilizes compositional changes, not micromachined piezoelectric materials May reduce the cost and size of oscillator circuitry May result in improved power efficiency


Technology Application

Waveguides, antennas, phononic crystals, frequency separators (superprisms), and optical devices with tuned absorbance characteristics WiFi, GPS, Bluetooth, and other radio based connectivity Electrical and optical devices Active or passive cooling THz imaging Biosensing


Detailed Technology Description

High frequency filters and oscillator circuits utilize mechanical resonances to absorb or emit electromagnetic energy. Currently, these types of integrated circuits use piezoelectric materials that must be micromachined and tuned to achieve a desired frequency response. Generally, the resulting frequency produced is insufficient and additional circuitry is necessary to clean up the response, taking up additional space and increasing the cost of the overall circuit. Researchers at the University of California Davis have developed a hybrid high frequency vibrational metamaterial for use in optical and electrical devices. This superlattice metamaterial is composed of molecules and nanoparticles and can resonate in response to optical, plasmonic, electrical, thermal, or mechanical stimulation. By modifying the individual particles, a specific resonance can be achieved between 100 MHz to 2 THz. Moreover, the metamaterial exhibits a high quality factor (Q Factor), improving power efficiency and eliminating the need for costly additional circuitry.


Others

Additional Technologies by these Inventors


Tech ID/UC Case

29323/2018-497-0


Related Cases

2018-497-0


Country/Region

USA

For more information, please click Here
Business of IP Asia Forum
Desktop View