亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Hybrid Electromechanical Metamaterials for Optical and Electrical Devices

技術優勢
Decreases the complexity of circuit designs by working with pure frequencies Tunable resonant frequencies between 100 MHz and 2 THz Utilizes compositional changes, not micromachined piezoelectric materials May reduce the cost and size of oscillator circuitry May result in improved power efficiency
技術應用
Waveguides, antennas, phononic crystals, frequency separators (superprisms), and optical devices with tuned absorbance characteristics WiFi, GPS, Bluetooth, and other radio based connectivity Electrical and optical devices Active or passive cooling THz imaging Biosensing
詳細技術說明
High frequency filters and oscillator circuits utilize mechanical resonances to absorb or emit electromagnetic energy. Currently, these types of integrated circuits use piezoelectric materials that must be micromachined and tuned to achieve a desired frequency response. Generally, the resulting frequency produced is insufficient and additional circuitry is necessary to clean up the response, taking up additional space and increasing the cost of the overall circuit. Researchers at the University of California Davis have developed a hybrid high frequency vibrational metamaterial for use in optical and electrical devices. This superlattice metamaterial is composed of molecules and nanoparticles and can resonate in response to optical, plasmonic, electrical, thermal, or mechanical stimulation. By modifying the individual particles, a specific resonance can be achieved between 100 MHz to 2 THz. Moreover, the metamaterial exhibits a high quality factor (Q Factor), improving power efficiency and eliminating the need for costly additional circuitry.
*Abstract

Researchers at the University of California, Davis have developed a hybrid electromechanical metamaterial for use in high frequency applications for optical and electrical devices.

*Principal Investigation

Name: Davide Donadio

Department:


Name: Joshua Hihath

Department:


Name: Omeed Momeni

Department:

其他

Additional Technologies by these Inventors


Tech ID/UC Case

29323/2018-497-0


Related Cases

2018-497-0

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備