AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Trapping and Sensing Biomolecules and Nanoparticles

Summary
Researchers at Purdue University have developed a new method that could help solve the nanoparticle diffusion time issue as well as stabilize nano-objects in the hotspot of the aperture. Using light, a long range flow is induced that captures nanoparticles in a solution and delivers them to the aperture trap. This technique operates on a subsecond scale, beating the time limits of previous processes. In order to immobilize nano-objects on a hotspot of the aperture, researchers applied a DC or low frequency AC field, which essentially traps the nano-object on the hotspot. This is especially important for the aforementioned quantum emitters, as they interact positively with the hotspots and allow for more revealing information on quantum technology to be ascertained.
Technology Benefits
Trapping mechanism operates on a subsecond time frameImproved hotspot targeting method Can be used for biomolecules and nanoparticles
Technology Application
Quantum technology Biology
Detailed Technology Description
George NnannaPurdue Calumet Water InstitutePurdue Mechanical Engineering
Countries
United States
Application No.
None
*Abstract

*Background
Current processes for trapping nanoparticles in an aperture are slow, even in top of the line systems. For instance, plasmonic aperture optical tweezers diffuse particles to an aperture trap via Brownian motion, which is a slow process that can take hours depending on the solution being diffused. This transportation system is a limitation of nano-optical tweezers in trapping the particles. In addition, accurate placement of particles in the hotspots of the aperture is also a problem. The placement of particles, such as quantum emitters, can affect their energy emission and hotspots of the aperture increase emission efficiency, allowing for certain readings that could be technologically relevant.
*IP Issue Date
None
*IP Type
Provisional
*Stage of Development
Proof of concept
*Web Links
Purdue Office of Technology CommercializationPurdueInnovation and EntrepreneurshipGeorge NnannaPurdue Calumet Water InstitutePurdue Mechanical Engineering
Country/Region
USA

For more information, please click Here
Mobile Device