亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。

Trapping and Sensing Biomolecules and Nanoparticles

总结
Researchers at Purdue University have developed a new method that could help solve the nanoparticle diffusion time issue as well as stabilize nano-objects in the hotspot of the aperture. Using light, a long range flow is induced that captures nanoparticles in a solution and delivers them to the aperture trap. This technique operates on a subsecond scale, beating the time limits of previous processes. In order to immobilize nano-objects on a hotspot of the aperture, researchers applied a DC or low frequency AC field, which essentially traps the nano-object on the hotspot. This is especially important for the aforementioned quantum emitters, as they interact positively with the hotspots and allow for more revealing information on quantum technology to be ascertained.
技术优势
Trapping mechanism operates on a subsecond time frameImproved hotspot targeting method Can be used for biomolecules and nanoparticles
技术应用
Quantum technology Biology
详细技术说明
George NnannaPurdue Calumet Water InstitutePurdue Mechanical Engineering
*Abstract

*Background
Current processes for trapping nanoparticles in an aperture are slow, even in top of the line systems. For instance, plasmonic aperture optical tweezers diffuse particles to an aperture trap via Brownian motion, which is a slow process that can take hours depending on the solution being diffused. This transportation system is a limitation of nano-optical tweezers in trapping the particles. In addition, accurate placement of particles in the hotspots of the aperture is also a problem. The placement of particles, such as quantum emitters, can affect their energy emission and hotspots of the aperture increase emission efficiency, allowing for certain readings that could be technologically relevant.
*IP Issue Date
None
*IP Type
Provisional
*Stage of Development
Proof of concept
*Web Links
Purdue Office of Technology CommercializationPurdueInnovation and EntrepreneurshipGeorge NnannaPurdue Calumet Water InstitutePurdue Mechanical Engineering
国家
United States
申请号码
None
国家/地区
美国

欲了解更多信息,请点击 这里
移动设备