Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- Technology Benefits
- · Superior manufacturability of nitride laser diodes · Improved device performance through elimination of polarization-induced electric fields and reduction of effective hole mass · Decreased current densities necessary to generate optical gain · Less heat generation, longer device lifetimes, and higher production yields
- Technology Application
- · Solid-state lighting systems, including projection displays · High-resolution printers · High-density optical data storage systems · Optical sensing
- Detailed Technology Description
- Researchers at UC Santa Barbara have developed a method for the growth and fabrication of nonpolar laser diodes. The structures can be grown either directly on free-standing nonpolar substrates or on nonpolar template layers pre-deposited on a foreign substrate. Many growth techniques are suitable for the method, including metalorganic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), and molecular beam epitaxy (MBE). For m-plane nitride laser diodes, optical gain is maximized when laser bars are oriented along the c-axis and minimized for laser bars oriented along the a-axis; for a-plane devices, optical gain is maximized for laser bars oriented along the c-axis and minimized when oriented along the m-axis. This in-plane, orientation-dependent gain is a phenomenon that is currently unique to nonpolar nitride laser diodes.
- Application No.
- 7839903
- Others
-
Background
Growing nitride laser diodes along the polar c-direction causes a polarization-induced electric field that causes a large effective hold mass that is detrimental to performance. Alternatively, growing nitride thin films along a nonpolar axis offers a means of eliminating polarization effects and reducing the effective hole mass in device structures. These changes should help to decrease the current densities necessary to generate optical gain in nitride laser diodes. In particular, nonpolar nitride laser bars should be properly oriented with regards to the planes of semiconductor crystals in order to achieve the aforementioned benefits.
Additional Technologies by these Inventors
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- Improved Manufacturing of Semiconductor Lasers
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Growing High-Quality Group III-Nitride Crystals
- Growth of Planar Semi-Polar Gallium Nitride
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Phosphor-Free White Light Source
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- LED Device Structures with Minimized Light Re-Absorption
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Oxyfluoride Phosphors for Use in White Light LEDs
- III-V Nitride Device Structures on Patterned Substrates
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Photoelectrochemical Etching for Chip Shaping Of LEDs
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Method for Growing Self-Assembled Quantum Dot Lattices
- Method for Increasing GaN Substrate Area in Nitride Devices
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Liftoff Technique
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Performance M-plane GaN Optical Devices
- Method for Enhancing Growth of Semipolar Nitride Devices
- Transparent Mirrorless (TML) LEDs
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- Planar, Nonpolar M-Plane III-Nitride Films Grown on Miscut Substrates
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- High Light Extraction Efficiency III-Nitride LED
- Tunable White Light Based on Polarization-Sensitive LEDs
- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Subtrates
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Calcium Impurity Reduction for Improved Light-Emitting Devices
- Contact Architectures for Tunnel Junction Devices
- New Blue Phosphor for High Heat Applications
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Multifaceted III-Nitride Surface-Emitting Laser
- Laser Diode System For Horticultural Lighting
- Fabricating Nitride Layers
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDS
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Laser Lighting System Incorporating an Additional Scattered Laser
Tech ID/UC Case
24986/2007-425-0
Related Cases
2007-425-0
- *Abstract
-
A method for the growth and fabrication of nonpolar laser diodes.
- *IP Issue Date
- Nov 23, 2010
- *Principal Investigator
-
Name: Steven DenBaars
Department:
Name: Robert Farrell
Department:
Name: Daniel Feezell
Department:
Name: Kwang Choong Kim
Department:
Name: Hisashi Masui
Department:
Name: Shuji Nakamura
Department:
Name: Mathew Schmidt
Department:
Name: James Speck
Department:
- Country/Region
- USA
