Biosensors For Measuring The Metastatic Potential And Chemoresistance Of Single Cancer Cells
This assay is capable of measuring the metastatic potential and/or chemoresistance of single living cancer cells.
These findings provide proof-of-concept that IMPs can measure the diversity and plasticity of metastatic potential of tumor cells in a sensitive and unbiased way. Furthermore, this assay measures the metastatic potential and/or chemoresistance of single living cancer cells.
Researchers at UC San Diego have developed a Fluorescence Resonance Energy Transfer (FRET) biosensor that measures the metastatic potential of single living cancer cells. Molecular imaging of metastatic ‘potential’ is a challenge. To engineer biosensors that can detect and measure metastatic 'potential' of single living cancer cells, a comprehensive analysis of the pan-cancer phosphoproteome was carried out to search for actin-remodelers required for cell migration, that are enriched in cancers, but excluded in normal cells. Only one phosphoprotein (PP) emerged, which was a bona-fide metastasis-related protein found in a variety of solid tumors. The next step was to design a multi-modular biosensors that are partly derived from the PP, and because PP integrates pro-metastatic signaling by multiple oncogenic receptors, and named them ‘Integrator-of-Metastatic-Potential (IMP)'. IMPs captured the heterogeneity of metastatic potential within primary lung and breast tumors at steady-state, detected those few cells which have acquired the highest metastatic potential and tracked their enrichment during metastasis
State Of Development A working prototype has been made Intellectual Property Info This technology is patent pending and available for licensing. Tech ID/UC Case 29562/2018-309-0 Related Cases 2018-309-0
USA
