Superparamagnetic Iron Oxide Nanoparticles Characterization
- Detailed Technology Description
- Characterizes SPIONsA search coil based frequency mixing method characterizes both magnetic and physical properties of superparamagnetic iron oxide nanoparticles (SPIONs). The technology analyzes the harmonic ratios and phase lags from liquid and frozen SPION samples to distinguish between single- and multi-core SPIONs. It also predicts saturation magnetization, average hydrodynamic size and dominating relaxation processes of SPIONs. The technology could be developed into an easy-to-use handheld device or other instruments (e.g., those that characterize saturation magnetization of magnetic particles as well as other physical characteristics such as size and structural data, or existing instruments that measure magnetic susceptibility on magnetic particles/rocks).Inexpensive SPION Magnetic and Physical MeasurementNo single instrument can measure the key magnetic and physical properties of iron oxide nanoparticles, and current techniques face many drawbacks. Vibrating sample magnetometers (VSM) used for saturation magnetization measurements are large and expensive, require equipment maintenance and experienced technicians, and cannot test on magnetic nanoparticles (MNP) in liquid. Transmission electron microscopy (TEM) measurements usually require bulky and highly expensive instrumentation to determine SPION structure. This new approach combines functions from VSM (to estimate saturation magnetization of SPIONs), dynamic light scattering (to measure hydrodynamic volumes of SPIONs), and TEM (to distinguish between single- and multi-core SPIONs). It meets the need for inexpensive, reliable, fast, and easy-to-use ways to characterize MNPs in aqueous solutions and replaces larger and more expensive instruments.BENEFITS AND FEATURES:Characterizes both magnetic and physical properties of SPIONsAnalyzes harmonic ratios and phase lagsAble to test liquid samplesReplaces larger and more expensive instrumentsAPPLICATIONS:Measuring properties of nanoparticlesInstrumentationBiomedical applicationsCharacterizing saturation magnetization of magnetic particles as well as other physical characteristics, such as size and structural dataMeasuring magnetic particle/rock magnetic susceptibilityPhase of Development - Working Prototype.
- *Abstract
-
None
- Country/Region
- USA

For more information, please click Here