AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Epitaxial Laser Integration on Silicon Based Substrates

Technology Benefits
Cost reduction  Lower threshold currentsIncreased temperature stability of lasing threshold Longer lifetimes
Technology Application
Silicon photonics
Detailed Technology Description
Researchers at the University of California, Santa Barbara have created a low-cost, highly scalable approach to integrating a compound-semiconductor laser or light source with silicon-photonic circuitry. The present invention discloses a silicon-photonic integrated circuit comprising a compound-semiconductor-based quantum-dot laser structure that is epitaxially grown on an indirect-bandgap substrate comprising a surface waveguide. The present invention provides an enabling technology for the low-cost manufacture of efficient lasers on silicon, as well as their optical coupling to silicon-based waveguides.
Application No.
WO2017210300
Others

Background

There has been an increased interest in silicon photonics as it has various applications. These applications include, but are not limited to, data center interconnects, sensing, high performance computing, and space-based communications. Unfortunately, the development of silicon-photonic integrated circuits is complicated. The desirability, scalability, and commercial success of conventional approaches for integrating compound semiconductor devices and silicon-based integrated-optics substrates has been limited by the high cost of compound-semiconductor substrates as compared to silicon-based substrates, as well as the incurrence of extra processing steps and processing complexity associated with the integration. As a result, there remains a need for a simple, low-cost approach to integrating compound-semiconductor devices and silicon-based integrated-optics substrates to form practical, commercially viable silicon-photonics systems.


Additional Technologies by these Inventors


Tech ID/UC Case

27119/2016-912-0


Related Cases

2016-912-0

*Abstract
A low-cost, highly scalable approach to integrating a compound-semiconductor laser or light source with silicon-photonic circuitry.
*IP Issue Date
Dec 7, 2017
*Principal Investigator

Name: John Bowers

Department:


Name: Arthur Gossard

Department:


Name: Alan Liu

Department:


Name: Justin Norman

Department:

Country/Region
USA

For more information, please click Here
Mobile Device