Method for Treating Spinal Cord Injury and Paralysis
Despite the inability of adult CNS to regenerate and the inhibitory environment in the CNS, this method enhances the survival of stem cells that have been grafted into the nervous system, improves functional recovery and alleviates neurological deficits.
UCSD researchers have discovered that neural stem cells that were grafted into the site of spinal cord injury will differentiate into neurons with long-extending axons that can synapse with host cells, and result in functional recovery in an animal model. In addition, UCSD investigators have found that adding a novel mixture of polymerizing compounds and growth factors with stem cell grafts dramatically improves neuron survival and functional recovery. This allows early stage neurons to repair lesions in the adult central nervous system (CNS) by surviving, extending their axons and integrating with adult neurons through synapse formation.
Inventor: LU, Paul | TUSZYNSKI, Mark H.
Priority Number: WO2013090205A2
IPC Current: A61K003512 | A61K003524 | A61K003818 | A61P002100 | A61P002500
Assignee Applicant: The Regents of the University of California
Title: METHODS FOR USE OF NEURAL STEM CELL COMPOSITIONS FOR TREATMENT OF CENTRAL NERVOUS SYSTEM LESIONS | MÉTHODES D'UTILISATION DE COMPOSITIONS DE CELLULES SOUCHES NEURALES POUR TRAITER DES LÉSIONS DU SYSTÈME NERVEUX CENTRAL
Usefulness: METHODS FOR USE OF NEURAL STEM CELL COMPOSITIONS FOR TREATMENT OF CENTRAL NERVOUS SYSTEM LESIONS | MÉTHODES D'UTILISATION DE COMPOSITIONS DE CELLULES SOUCHES NEURALES POUR TRAITER DES LÉSIONS DU SYSTÈME NERVEUX CENTRAL
Summary: The method is useful for: treating a lesion in the post-embryonic CNS of a subject, preferably human (all claimed); and inducing formation of functional synaptic junctions and corticospinal regeneration in the spinal cord. Tests details are described but no results given.
Disease Diagnostic/Treatment
Neuron Disease
9649358
State Of Development The neuronal regeneration and functional recovery by the injected neural stem cells have been demonstrated in animal models. In addition, in vivo animal models of SCI show that in rat embryonic neural grafts, the novel mixture dramatically improves graft survival, enhances anatomical repair of the nervous system and improves functional outcomes. Intellectual Property Info Patent rights are available for licensing. Related Materials Motor axonal regeneration after partial and complete spinal cord transection. Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, Haringer V, Havton L, Weishaupt N, Bennett D, Fouad K, Tuszynski MH. J Neurosci. 2012 Jun 13;32(24):8208-18. Tech ID/UC Case 22677/2011-227-0 Related Cases 2011-227-0
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Cell. 2012 Sep 14;150(6):1264-73.
UCSD finds possible treatment for paralysis
Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, Boehle E, Ahmad R, Poplawski G, Brock J, Goldstein LS, Tuszynski MH. • Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014 Aug 20;83(4):789-96.
USA

