AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Method and Process to Fabricate Hydrophobic Microchannels

Summary
Researchers at Purdue University have developed a new method of creating hydrophobic surfaces on polymers and metals for use in fabricating microfluidic devices with structured inner wall surfaces that provides control of flow rate in microfluidic channels. It may be used for applications where it is desired to have channels with a controllable flow rate, for microfluidic devices in which different channels have a different flow rate, or to separate different fluids or particles passing through the device. This technology may also be used in heat exchangers by removing condensed water drops, improving the heat transfer efficiency.
Technology Benefits
Creates hydrophobic surfaces on polymers and metals Flow rate control and pressure control valves in fluidic channels Saves the cost associated with chemical treatment
Technology Application
Cell biological research DNA analysis Inkjet printer heads Fuel cells Optofluidics Heat exchangers
Detailed Technology Description
Yung ShinManufacturing LaboratoryPurdue Mechanical Engineering
Countries
United States
Application No.
None
*Abstract

*Background
Hydrophobic polymer surfaces use surface roughness and textures to enhance hydrophobicity. The flow of fluids through device channels is usually controlled by external flow control devices, such as pumps and pressure generators; however, when flow rates through individual channels in the microfluidic device are varied, internal flow controls may be required. When it is not desirable to add flow control devices, the channel wall may be modified chemically or structurally. The many disadvantages of chemical treatment include the cost of procuring, storing, handling, and disposing chemicals; may make device unfit for some applications due to unwanted chemical reactions; and chemical coatings are prone to being washed away or wearing out over time. There is, therefore, a lack of a quick and inexpensive fabrication techniques to create microfluidic devices having channels with controllable flow rate without the use of chemical treatment or complex flow control devices.
*IP Issue Date
None
*IP Type
Provisional
*Stage of Development
Prototype testing
*Web Links
Purdue Office of Technology CommercializationPurdueInnovation and EntrepreneurshipYung ShinManufacturing LaboratoryPurdue Mechanical Engineering
Country/Region
USA

For more information, please click Here
Mobile Device