AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Multi-Component Metal Oxide Nanoneedles as Pseudocapacitor Electrodes

Summary
To solve these issues, Purdue University researchers have developed a multicomponent NixCoyMn1-x-y oxide with a homogenous structure for use in high performance supercapacitor applications. This arrangement exhibits a three-fold higher capacitance than that of NiCo2O4, has excellent long-term stability, and has low internal resistance. This development is advantageous due to the unique homogenous structure of the metal oxide with uniform distributions of nickel, cobalt, and manganese metals; enhanced oxidation state; and provides synergy with the different metal components, which can lead to a wide variety of applications in the supercapacitor industry in competition with batteries and in future designs of novel electrode materials.
Technology Benefits
Multicomponent and homogenousHigher capacitance and long-term stability Low internal resistance with energy storage
Technology Application
Supercapacitor industryFuture designs for electrode materialsElectric vehicles
Detailed Technology Description
Timothy FisherNanoscale Transport Research GroupPurdue Mechanical Engineering
Countries
United States
Application No.
None
*Abstract

*Background
There is an increasingly growing demand for power supplies and energy storage systems for practical applications such as electric vehicles. Among energy storage systems, supercapacitors are reliable due to their higher power density than batteries, higher energy density than conventional electrolytic capacitors, and a long cycle life. Therefore, designing novel electrode materials with large surface areas and high electrical conductivity is important to enhance the use of supercapacitors. Binary metal oxides, such as spinel nickel cobaltite (NiCo2O4), have attracted interest because of their low-cost, abundant resources, and environmental benignity. More importantly, they have superior electrical conductivity and higher electrochemical activity than single-component metal oxides. To increase the energy and power densities of the pseudo capacitive electrodes, single-component metal oxides combined with NiCo2O4 have been proposed; however, there are potential problems such as the fabrication procedures being complicated (multi-step), the interfaces between the heterogeneous metal oxides may reduce electron transfer, and it is unlikely to fully utilize the electroactive sites of the mixed metal oxides.
*IP Issue Date
None
*IP Type
Provisional
*Stage of Development
Process Validation in Lab
*Web Links
Purdue Office of Technology CommercializationPurdueInnovation and EntrepreneurshipTimothy FisherNanoscale Transport Research GroupPurdue Mechanical Engineering
Country/Region
USA

For more information, please click Here
Mobile Device