Chemical Separation methods Based on Changes in Solubility Brought About by Isomerization of Protecting Groups
- Detailed Technology Description
- None
- *Abstract
-
An important part of any synthesis or natural product isolation procedure is the separation of a desired compound from contaminants. This step is often the most labor intensive, energy demanding, environmentally abusing, and expensive part of a chemical synthesis or chemical manipulation. Contaminants may include solvents, reaction byproducts, catalysts, reagents, and any other material not required for, or undesirable in, further uses of the product. Both fine chemical synthesis and larger scale chemical production involve at least two essential activities--chemical reaction to create the product, and separation (most often for purification purposes) of the product by removing contaminants. Separations generally rely on phase changes or phase transfers. Distillation, sublimation, solvent evaporation, chromatography, acid-base extraction, solid-solid and solid-liquid extraction, and recrystallization are examples of traditional means of product isolation. A more recent and currently popular approach to product isolation is based on solid-phase synthetic principles. Generally, solid phase synthesis involves attaching a reactant to an insoluble substrate and allowing reagents to react with the reactant at the surface of the solid. Often beads composed of polymers are used for this process. This method allows the use of large excesses of reagents and catalysts because product separation is achieved by filtration or washing of the solid support. High chemical conversion can be achieved when excesses of reagents are used. However, solid phase synthesis does not have universal applicability. One disadvantage of solid phase synthesis is that reactions at the solid-liquid interface are not always readily controlled. Additionally, not all chemical reactions are compatible with this method, and since solid phase separation is substantially heterogeneous, the use of solid phase synthesis runs contrary to a more preferred homogenous reaction mixture. The present invention relates generally to agents useful in partitioning and/or purification of reactants, intermediate products, and final products from a phase as well as methods of using partitioning agents to selectively separate active agents (either reactant or product) from a phase. The present invention may also be described as being directed to chemical product isolation, separation, phase transfer, and/or purification as well as agents or compounds useful therefor.
- *Principal Investigator
-
Name: Craig Wilcox, Dept. Chair / Professor
Department: Chemistry
Name: Jaemoon Yang, Graduate Research Assistant
Department: Chemistry
- Country/Region
- USA

For more information, please click Here