Search
  • Within this site
AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.
Back to search results

catheter system for measuring arterial stiffness and pressure drops (Ramot)


Summary

An innovative real-time, ultra-sensitive, Differential Pressure Catheter measurement and novel Arterial Stiffening assessment system during Renal Denervation (RDN) procedures.

A functional combined assessment system of stenosis severity and arterial wall stiffness variation for selection and deployment of stents during Coronary interventions.

The technology offers enhancement of procedure outcome and cost reduction by avoiding repeated hospital visits and length of recovery.RDN is an endovascular catheter based procedure which uses thermal ablation for treatment of resistant hypertension. During the procedure, energy carrying Radiofrequency (RF) pulses are applied into the renal arteries wall at several locations, causing thermal damage aimed for denervation of nerves located in the vascular wall adventitia. The RDN procedure causes reduction of renal sympathetic afferent and efferent activity, which results in decrease of the systemic blood pressure. The success/failure of the procedure is currently evaluated only during follow-up, and there is no indication for the effect of the RF ablation in real-time during the procedure. Most importantly, there is no indication of the arterial stiffening during the procedure – a parameter critical to the success of the procedure.

The proposed technology facilitates real time monitoring of the stiffening of the renal arteries as a result of the RF ablation. The arterial stiffening is computed from changes in the blood pressure drop, measured from the artery lumen using a catheter. A critical requirement of the stiffening computation is that the pressure drop be measured with extremely high accuracy (~0.05 mm Hg). To the best of our knowledge the best accuracy available by commercial catheters for differential pressure (or pressure gradient) measurements is approximately 1.0 mmHg, which is too course for measurement of the required pressure drops during RDN. Our proposed technology makes such accuracy feasible without changing the pressure transducers owing to our in-house pressure restoration algorithm and monitoring system. The combination of pressure drop measurements with our proposed correcting algorithm brings the system to the required accuracy and enables the computation of arterial wall stiffening. The end result is the calculation of the effect and the potential damage of thermal ablation on the renal arteries.

The proposed technology and product is a differential pressure catheter measurement system comprised of a high precision differential pressure transducer connected to a fluid-filled multi-lumen, intra-arterial catheter, and a patented algorithm controller unit that computes the arterial stiffening from the acquired differential pressure measurements. The catheter is inserted into the renal arteries, which are subjected to renal denervation treatment, measures pressure drops in the location of the treatment, and diagnose and calculates the degree of arterial stiffening resulting from the treatment. Optionally, the catheter can be combined with a renal denervation technology (i.e. RF, laser ablation), or perform as a stand-alone system.


Technology Application

The potential field of application is Renal Denervation (RDN). The proposed technology offers monitoring in real-time the RDN procedure, and providing the interventionalists with important and critical information on the effect of their intervention. Currently the interventionalists do not get any feedback on how does the RF ablation affects the renal arteries, and whether the thermal ablation was efficient enough. Therefore any additional data to the interventionalists in real-time is essential, and can contribute to the successful outcome of the procedure.

Another field in which our technology can be applied is Coronary Intervention. The proposed technology can perform functional assessment of stenosis severity combined with assessment of the arterial wall stiffness variations. Such a combination is critical to the interventionalists as it provides the necessary and needed data for better decision making before stenting. Our proposed technology is specifically critical to border line patients where the arterial blockage is medium and the stent deployment is not considered fully. Using this technology in coronary intervention will require adaptation of the catheter system to the coronary artery tree.


ID No.

8-2013-562


Country/Region

Israel

For more information, please click Here
Business of IP Asia Forum
Desktop View