Spinodal-Based Co-Continuous Composites For High Performance Battery Electrodes
• Enhanced overall electrochemical performance, due to uniform pore geometry and pore distribution within the porous electrode • Tunable electrochemical performance • Greater total energy storage • Technique can be applied to a wide variety of electrode materials • Scalable
Electrochemical storage devices that deliver high energy and power densities
While batteries excel at delivering high energy densities, they require extended charge and discharge times. In contrast, supercapacitors excel in situations requiring rapid charge and discharge, but cannot easily deliver a high energy density. Researchers at UCI have begun to bridge that gap by creating a 3-dimensional composite electrode whose unique microstructure enables unprecedented tunability of these characteristics, and simultaneous delivery of both high energy and power. UCI researchers have developed a new 3-D composite porous electrode that allows for independent tuning of key microstructural parameters that govern electrochemical performance. The unique ability to tune these parameters enhances the electrochemical performance of the resulting battery and enables it to be tuned to a wide variety of electrochemical performance levels as well as the capacity for greater total energy storage.
Tech ID/UC Case 25648/2015-784-2 Related Cases 2015-784-2
美国

