AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Spinodal-Based Co-Continuous Composites For High Performance Battery Electrodes

Technology Benefits
• Enhanced overall electrochemical performance, due to uniform pore geometry and pore distribution within the porous electrode • Tunable electrochemical performance • Greater total energy storage • Technique can be applied to a wide variety of electrode materials • Scalable
Technology Application
Electrochemical storage devices that deliver high energy and power densities
Detailed Technology Description
While batteries excel at delivering high energy densities, they require extended charge and discharge times. In contrast, supercapacitors excel in situations requiring rapid charge and discharge, but cannot easily deliver a high energy density. Researchers at UCI have begun to bridge that gap by creating a 3-dimensional composite electrode whose unique microstructure enables unprecedented tunability of these characteristics, and simultaneous delivery of both high energy and power. UCI researchers have developed a new 3-D composite porous electrode that allows for independent tuning of key microstructural parameters that govern electrochemical performance. The unique ability to tune these parameters enhances the electrochemical performance of the resulting battery and enables it to be tuned to a wide variety of electrochemical performance levels as well as the capacity for greater total energy storage.
Others

Tech ID/UC Case

25648/2015-784-2


Related Cases

2015-784-2

*Abstract
This is a method for creating a high performance battery electrode that provides better performance, is highly tunable for different electrochemical applications, and has the capacity for greater total energy storage than the current state of the art.
*Principal Investigator

Name: Ali Mohraz

Department:


Name: Daniel Mumm

Department:


Name: Jessica Witt

Department:

Country/Region
USA

For more information, please click Here
Mobile Device