Search
  • Within this site
AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.
Back to search results

Paper-Based Electrolyte for Supercapacitive Force Sensors


Detailed Technology Description

Solid-State Electrolyte is Highly Flexible and SensitiveA highly-flexible, solid-state electrolyte with reasonable ionic conductivity for a solid electrolyte offers potential solutions for supercapacitive sensors. The paper-based electrolyte is fabricated by mixing ionic liquid with a photo-curable polymer and then brushing this ionic gel on to filter paper. The gel dissolves the paper and subsequently becomes highly flexible after a short time of UV exposure. The resulting electrolyte, which does not use any liquid, is thermally stable over a wide range of operating temperatures and can be shaped into various geometries (i.e., spirals, springs, concave or convex curved plates, rolled-up cylinders, etc.) without complex or expensive processes. The low-cost technology is quickly and easily produced by hand without complex processing and the fabrication process can be scaled up for roll to roll processing.Solid Polymer Electrolyte can be Shaped into Several GeometriesSolid polymer electrolytes (SPEs) seek to overcome drawbacks of liquid electrolytes for a variety of charge transport and storage applications including batteries and supercapacitors. While viewed as inherently safer than their liquid counterparts, SPEs often suffer from lower capacitance and ionic mobility. This new, low-cost solid polymer electrolyte is paper-based, using cellulose from filter paper to confer stability, promote flexibility and suppress cracking or tearing. These conferred mechanical properties allow for the solid-state electrolyte to be shaped into several geometries. Furthermore, the low stiffness solid electrolyte can be incorporated in a supercapacitor and deformed by force so that electrolyte contact area with electrode increases in response to the force.BENEFITS AND FEATURES:Highly flexibleHighly sensitiveSolid-state electrolyteReasonable ionic conductivity for a solid electrolyteSupercapacitive sensorsPaper-basedScalable, low-cost and fast fabricationAPPLICATIONS:Thin flexible supercapacitorsSensing external environmental stimuli (e.g., humidity, temperature, pH, ion strength, solvent, and ligand interaction)Supercapacitor force sensorIn vivo applications in the human body and/or underwater environments (sensors are not corrupted by parasitic capacitance due to water or tissue)Catheter based diagnostic and surgical proceduresBionic artificial organsPhase of Development - Prototype developmentNovel electrolyte material developed and fabricated into various geometries; supercapacitor based sensor configurations with the new technology designed, fabricated and tested.


Country/Region

USA

For more information, please click Here
Business of IP Asia Forum
Desktop View