Search
  • Within this site
AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.
Back to search results

Boron Phosphide and Its Material Systems for Thermal Management and Thermal Device Applications


Technology Benefits

Easy to integrate into electronics and photonics devicesInexpensive to manufactureEasy to synthesizeHighly thermally conductiveDoesn’t require additional power or device space


Technology Application

Substrate for heat dissipationThermal interface material


Detailed Technology Description

Researchers at UCLA have synthesized a novel material, boron phosphide (BP), for thermal management. This material can be synthesized to a high quality at a large scale and low cost. The innovative synthesis approaches include flux growth method, solution processing and floating zone furnace growth. The thermal conductivity of BP is 3 times higher than that of silicon, making it an excellent heat sink that can dissipate heat very quickly. Furthermore, the semiconducting behavior of BP makes it easy to integrate with photonics and electronics. This novel material has exceptional chemical refractory properties, high thermal stability, and a large elastic modulus. Therefore, BP is an ideal substrate for device fabrication and thermal interface material.


Others

Background

Thermal management is a major challenge for the electronics and photonics industries, as consumer products get smaller by generation. Excess heat built-up in small spaces can significantly impair device performance and cause permanent damage to products. Current solutions to thermal management in electronics include active cooling, using fans and air conditioners, as well as passive cooling, by incorporating materials with high thermal conductivity. Active cooling requires an additional power supply and devices, but materials with high thermal conductivity, such as diamond and boron nitride, are costly and difficult to integrate into electronic devices.


Tech ID/UC Case

29157/2018-191-0


Related Cases

2018-191-0


Country/Region

USA

For more information, please click Here
Business of IP Asia Forum
Desktop View