Infrared Detector Utilized in Ultrahigh Resolution Imaging
A dramatically improved signal-to-noise ratio allowing for greater sensitivity The potential to extend upconverted light into the visible range Easy scalability for high spatial resolution imaging applications
Cell imaging Pollution detection Defense: rocket and reactor emissions evaluation Radio-astronomy
Researchers at the University of California have developed an inexpensive infrared detector with a dramatically improved signal-to-noise ratio and greater sensitivity. The proposed device converts the signal from an IR or MIR source into a visible or near-visible signal or image. The device does this by upconverting the energy of infrared photons in the 50 meV to 200 meV range (corresponding to wavelengths from 6 to 250 microns), yielding infrared photons of higher energy. These higher energy photons can be easily imaged with a Si CCD camera. An ultimate resolution of 50 nm can be achieved in the imaging mode using a near-field scanning optical microscope for reading the upconverted image, which also gives the device the ability to image live cells for long periods of time.
6541788
Background The use of semiconductor materials has brought a new means for the detection and use of infrared radiation in the mid- and far-infrared regions (M&FIR). Infrared detectors that can measure wavelengths in the M&FIR region can be useful in many fields, such as pollution detection and thermal imaging. Two ways that scientists currently measure M&FIR is through the development of semiconductor quantum well infrared detectors (QWIP) and through indium antimonide (InSb) bonded to a silicon chip. Both of these methods have low efficiency and are very costly. Additional Technologies by these Inventors Tech ID/UC Case 24599/1999-039-0 Related Cases 1999-039-0
USA

