Degradation of Water Contaminants with Continuous Photoreactor
Researchers at Purdue University have designed a series of continuous flow photoreactors that can effectively remove these compounds. MTBE, ETBE, TAME, DIOX, and DIPE undergo a degradation process involving visible/near UV light (300-600nm). Therefore, TiO2 coated glass tubing or beads are placed and water soluble ethers can be partially degraded using simple fluorescent lighting, up to 15 percent in less than two meters of reaction flow distance. This system is advantageous because oxygen concentration is kept constant throughout the process, so destruction of the substrate is not limited by oxygenation of the solution. Second, by coating the TiO2 onto surfaces of glass beads, there are no in-solution reaction components, catalyst, or products that must be dealt with at the end. Third, the results demonstrate that the same process can also work for other water soluble ethers. Finally, the reactor design is not limited by size and is expandable to larger municipal water systems that use larger flow rates, and thereby, resulting in improved degradation of many dangerous water contaminants.
Effective removal of water contaminantsConstant oxygenation and no in-solution reactions Reactor not limited by size
Public water systems
Reynaldo BarretoPurdue Biology/Chemistry
United States
None
USA

