AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

Microstructured Cathode for Self-Regulated Oxygen Generation and Consumption

Technology Benefits
Self-supplies oxygen onboard on-demandComplete fuel cell with no ancillary partsDoes not depend on the surrounding environment and does not need to “breathe” airStackable for higher power outputAbility for sub-centimeter sizingImproved oxygen reduction rate balances anodic and cathodic reactionsMembrane-less packaging and gravity-independent operationMonolithic, standalone system is simple and mechanically robustFlexibility in fuel/oxidant sourcesHigh energy density and high power density
Technology Application
Complete, miniaturized fuel cell with no ancillary partsPortable devices such as laptops, cell phones, and global positioning systemsCharging portable devices in the outdoor area (for soldiers or campers) to replace heavy batteries for given energy.Stacked system for higher power output
Detailed Technology Description
Researchers from the UCLA mechanical and aerospace engineering department have designed and fabricated a microstructured cathode capable of generating oxygen bubbles, consuming the oxygen bubbles as needed, and stopping the oxygen generation when it is not consumed all in a self-regulated fashion. The microstructure of the device is designed such that an electrolytic oxidant comes in contact with an electrocatalyst to generate oxygen bubbles via a reduction reaction. The cathode does not need pressurized gas tank, moving pumps or ambient air to introduce the oxygen and they can therefore be compactly stacked for higher power output. The system operates in a manner free of gravitational forces and thus may be used in non-stationary applications. The monolithic, self-regulating cathode is simple and mechanically robust, and would ideally be coupled with the recently developed monolithic anode (by the authors) that self-pumps the fuel.
Application No.
9899693
Others

State Of Development

Devices that generate and consume oxygen in a self-regulated manner have been fabricated and tested in electrochemical and visual experiments. Future work will focus on optimizing parameters such as hydrogen peroxide concentration, volume of stored hydrogen peroxide, and cathodic micropocket dimensions. Other future work will strive to implement the cathode into existing self-pumping fuel cells to realize a "true miniature fuel cell" that does not lack oxidant and self-regulates in both anode and cathode.

Background

Despite anticipated promise in high energy densities and efficiency, fuel cells have failed to reach practical applications for portable electronics primarily due to the inability to miniaturize the ancillary parts (e.g., pumps, valves, etc.) needed to operate the fuel cell and package them into a small space without eating up the volume for fuel. Removing all ancillary parts would allow a simpler design for fabrication, a more mechanically robust device, and a system with a higher energy and power density. Recent inventions have produced centimeter-sized fuel cells by removing ancillary parts, but these designs require access to ambient air and thus prevent the feasibility for stacking of the fuel cells for higher power output. In need of active oxygen supply within the fuel cell stacks, presented technology has been devised.

Related Materials

J. I. Hur, D. D. Meng, and C.-J. Kim, "Self-Pumping Membraneless Miniature Fuel Cell with an Air-breathing Fuel-Tolerant Pt Cathode," Journal of Microelectromechanical Systems, Vol. 21, 2012, pp. 476-483.
J.I. Hur and C.-J. Kim, "A Microstructured Cathode for Fuel Cell with Self-Regulated O2 Bubble Creation and Consumption," Proc. IEEE Int. Conf. MEMS, Paris, France, Jan. 2012, pp. 35-38.
J.I. Hur and C.-J. Kim, "Self-Contained Oxygen Supply for Self-Regulating Miniature Fuel Cell," Proc. PowerMEMS, Atlanta, GA, USA, Dec. 2012, pp. 191-194.


Additional Technologies by these Inventors


Tech ID/UC Case

24166/2012-408-0


Related Cases

2012-408-0

*Abstract
UCLA researchers have developed a cathode that generates oxygen, consumes the oxygen as needed, and stops the oxygen generation when it is not consumed, all in a self-regulated fashion.
*Applications
  • Complete, miniaturized fuel cell with no ancillary parts
    • Portable devices such as laptops, cell phones, and global positioning systems
    • Charging portable devices in the outdoor area (for soldiers or campers) to replace heavy batteries for given energy.
  • Stacked system for higher power output
*IP Issue Date
Feb 20, 2018
*Principal Investigator

Name: Janet Hur

Department:


Name: Chang-Jin Kim

Department:


Name: Prosenjit Sen

Department:

Country/Region
USA

For more information, please click Here
Mobile Device