Improved GaN Substrates Prepared with Ammonothermal Growth
- 技術優勢
- Smoother substrate surfaceImproved device efficiency
- 技術應用
- LEDs and Laser DiodesHigh Electron Mobility Transistors (HEMTs)Power switching devices
- 詳細技術說明
- Researchers at the University of California, Santa Barbara have developed a method for growing m-plane GaN using an ammonothermal growth technique. Using this method, m-plane growth results in smoother surfaces than c-plane growth. M-plane growth has associated benefits such as p-type doping and inverted polarization charge. High p-type conductivity improves device efficiency, while transistors grown on m-plane GaN overcome high gate leakage problems of traditional GaN transistors. M-plane optical devices also experience higher emission efficiency due to the absence of a polarization field, and their optically active layer usually has higher Indium incorporation, allowing for longer wavelength emission. This novel method also reduces processing steps because flip-chip bonding and de-bonding steps are no longer needed to expose the m-plane of the growth.
- *Abstract
-
A method for growing m-plane GaN using an ammonothermal growth technique.
- *IP Issue Date
- Jul 13, 2010
- *Principal Investigation
-
Name: Tadao Hashimoto
Department:
Name: Shuji Nakamura
Department:
Name: Hitoshi Sato
Department:
- 申請號碼
- 7755172
- 其他
-
Background
The usefulness of gallium nitride (GaN) and its alloys has been well established for its use in the fabrication of optoelectronic and high-powered electronic devices. Most commercially available GaN-based devices are grown on conventional c-plane surfaces. The use of c-plane surfaces has disadvantages, which limit the performance of resulting devices. Recent studies have pointed out several benefits and advantages of growing m-plane devices. Despite these benefits, current technology is limited due to poor smoothness of m-plane surfaces. Additional Technologies by these Inventors
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Improved Manufacturing of Semiconductor Lasers
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Growing High-Quality Group III-Nitride Crystals
- Growth of Planar Semi-Polar Gallium Nitride
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Growth of Group III-Nitride Crystals using Supercritical Ammonia and Nitrogen
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Phosphor-Free White Light Source
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- LED Device Structures with Minimized Light Re-Absorption
- III-V Nitride Device Structures on Patterned Substrates
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Method for Increasing GaN Substrate Area in Nitride Devices
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Liftoff Technique
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Performance M-plane GaN Optical Devices
- Method for Enhancing Growth of Semipolar Nitride Devices
- Transparent Mirrorless (TML) LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- Planar, Nonpolar M-Plane III-Nitride Films Grown on Miscut Substrates
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- High Light Extraction Efficiency III-Nitride LED
- Tunable White Light Based on Polarization-Sensitive LEDs
- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Subtrates
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Contact Architectures for Tunnel Junction Devices
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Multifaceted III-Nitride Surface-Emitting Laser
- Laser Diode System For Horticultural Lighting
- Fabricating Nitride Layers
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Laser Lighting System Incorporating an Additional Scattered Laser
Tech ID/UC Case
23650/2006-666-0
Related Cases
2006-666-0
- 國家/地區
- 美國

欲了解更多信息,請點擊 這裡