Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Technology Benefits
- · Variability in layer thickness · Violet and near-ultraviolet light emission · Growth of nonpolar InGaN at a reduced temperature · Growth of InGaN layers at or near atmospheric pressure
- Technology Application
- · LEDs · Laser diodes (LDs)
- Detailed Technology Description
- UC Santa Barbara researchers have developed a method for fabricating high-quality indium-containing epitaxial layers, heterostructures, and devices based on InGaN growth on GaN substrates. These InGaN films are grown along the nonpolar direction using a metalorganic chemical vapor deposition technique, and result in the successful creation of violet and near-ultraviolet LEDs and LDs. Previous issues related to the growth of InGaN-based devices, such as gross surface roughening, low indium incorporation, and indium desorption in InGaN heterostructures have been overcome with this technique.
- Application No.
- 7186302
- Others
-
Background
GaN and its alloys (AlGaN, InGaN, AlInGaN) have been established as effective for fabrication of visible and ultraviolet optoelectronic devices and high-power electronic devices. These devices are most often grown along the polar c-direction, using a variety of growth techniques, including molecular beam epitaxy (MBE), metalorganic chemical vapor deposition (MOCVD), or hydride vapor phase epitaxy (HVPE). Growing devices in the polar c-direction results in charge separation, spontaneous polarization, and degraded device performance. Growth of such devices along a nonpolar axis could significantly improve their performance, but InGaN-based devices have previously encountered problems with growth conditions and material quality.
Additional Technologies by these Inventors
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Nonpolar (Al, B, In, Ga)N Quantum Well Design
- Improved Manufacturing of Semiconductor Lasers
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Etching Technique for the Fabrication of Thin (Al, In, Ga)N Layers
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Growing High-Quality Group III-Nitride Crystals
- Growth of Planar Semi-Polar Gallium Nitride
- Defect Reduction of Non-Polar and Semi-Polar III-Nitrides
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- Novel Current-Blocking Layer in High-Power Current Aperture Vertical Electron Transistors (CAVETs)
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Phosphor-Free White Light Source
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- LED Device Structures with Minimized Light Re-Absorption
- (In,Ga,Al)N Optoelectronic Devices with Thicker Active Layers for Improved Performance
- Polarization-Doped Field Effect Transistors with Increased Performance
- Oxyfluoride Phosphors for Use in White Light LEDs
- III-V Nitride Device Structures on Patterned Substrates
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- Improved GaN Substrates Prepared with Ammonothermal Growth
- High-Quality N-Face GaN, InN, AlN by MOCVD
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Photoelectrochemical Etching for Chip Shaping Of LEDs
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Defect Reduction in GaN films using in-situ SiNx Nanomask
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Method for Growing Self-Assembled Quantum Dot Lattices
- Method for Increasing GaN Substrate Area in Nitride Devices
- GaN-based Vertical Metal Oxide Semiconductor and Junction Field Effect Transistors
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Liftoff Technique
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Growth of High-Performance M-plane GaN Optical Devices
- Method for Enhancing Growth of Semipolar Nitride Devices
- Transparent Mirrorless (TML) LEDs
- Solid Solution Phosphors for Use in Solid State White Lighting Applications
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- Planar, Nonpolar M-Plane III-Nitride Films Grown on Miscut Substrates
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- High Light Extraction Efficiency III-Nitride LED
- Tunable White Light Based on Polarization-Sensitive LEDs
- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Subtrates
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Enhanced Light Extraction LED with a Tunnel Junction Contact Wafer Bonded to a Conductive Oxide
- Increased Light Extraction with Multistep Deposition of ZnO on GaN
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Calcium Impurity Reduction for Improved Light-Emitting Devices
- Contact Architectures for Tunnel Junction Devices
- New Blue Phosphor for High Heat Applications
- A Structure For Increasing Mobility In A High-Electron-Mobility Transistor
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- III-N Based Material Structures and Circuit Modules Based on Strain Management
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Achieving “Active P-Type Layer/Layers” In III-Nitride Epitaxial Or Device Structures Having Buried P-Type Layers
- Improved Performance of III-Nitride Photonic Devices
- Multifaceted III-Nitride Surface-Emitting Laser
- Laser Diode System For Horticultural Lighting
- Fabricating Nitride Layers
- Reduction in Leakage Current and Increase in Efficiency of III-Nitride MicroLEDS
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Laser Lighting System Incorporating an Additional Scattered Laser
- Gated Electrodes For Electrolysis And Electrosynthesis
- Fabrication of N-face to Improve Telecommunications Efficiency
- Methods for Locally Changing the Electric Field Distribution in Electron Devices
Tech ID/UC Case
25014/2004-495-0
Related Cases
2004-495-0
- *Abstract
-
A method for fabricating high-quality indium-containing epitaxial layers, heterostructures, and devices based on InGaN growth on GaN substrates.
- *IP Issue Date
- Mar 6, 2007
- *Principal Investigator
-
Name: Arpan Chakraborty
Department:
Name: Steven DenBaars
Department:
Name: Benjamin Haskell
Department:
Name: Stacia Keller
Department:
Name: Umesh Mishra
Department:
Name: Shuji Nakamura
Department:
Name: James Speck
Department:
- Country/Region
- USA
