Method for Manufacturing Improved III-Nitride LEDs and Laser Diodes: Monolithic Integration of Optically Pumped and Electrically Injected III-Nitride LEDs
- Technology Benefits
- · Reduced contact resistance, absorption loss, and spreading resistance in p-GaN devices · Decreased operating voltage of LEDs and LDs leads to increased wall-plug efficiency · Reduced thermal losses from resistive p-GaN layers
- Technology Application
- · Light emitting diodes (LEDs) · Laser diodes (LDs)
- Detailed Technology Description
- A novel device structure has been developed for III-nitride devices grown on non-polar or semipolar planes that does not involve the growth of p-type layers after the active region. This configuration reduces the defects and device degradation common in III-nitride LEDs and LDs grown on semipolar planes, and has the potential for creating green III-nitride LEDs and LDs with improved performance and higher wall-plug efficiency.
- Application No.
- 20160322782
- Others
-
Background
The usefulness of III-nitrides has been well established for fabrication of visible and ultraviolet optoelectronic devices and high power electronic devices. Growing these devices on nonpolar or semipolar planes of the crystal is a popular solution for reducing the polarization effects. One of the challenges of nonpolar and semipolar growth is that when green III-nitride LEDs and LDs are grown with active regions with high indium contents, the active region can form extended defects and can easily be degraded by subsequent high temperature growth steps. This degradation is due to the growth of the p-type layers after the growth of the active region, which uses high temperatures and impedes device performance. Additional Technologies by these Inventors
- Reduced Dislocation Density of Non-Polar GaN Grown by Hydride Vapor Phase Epitaxy
- Growth of Planar, Non-Polar, A-Plane GaN by Hydride Vapor Phase Epitaxy
- Improved Manufacturing of Semiconductor Lasers
- Cleaved Facet Edge-Emitting Laser Diodes Grown on Semipolar GaN
- Enhancing Growth of Semipolar (Al,In,Ga,B)N Films via MOCVD
- GaN-Based Thermoelectric Device for Micro-Power Generation
- Growth of High-Quality, Thick, Non-Polar M-Plane GaN Films
- Method for Growing High-Quality Group III-Nitride Crystals
- Growth of Planar Semi-Polar Gallium Nitride
- Photonic Structures for Efficient Light Extraction and Conversion in Multi-Color LEDs
- MOCVD Growth of Planar Non-Polar M-Plane Gallium Nitride
- Lateral Growth Method for Defect Reduction of Semipolar Nitride Films
- Low Temperature Deposition of Magnesium Doped Nitride Films
- Growth of Polyhedron-Shaped Gallium Nitride Bulk Crystals
- Improved Manufacturing of Solid State Lasers via Patterning of Photonic Crystals
- Control of Photoelectrochemical (PEC) Etching by Modification of the Local Electrochemical Potential of the Semiconductor Structure
- Phosphor-Free White Light Source
- Single or Multi-Color High Efficiency LED by Growth Over a Patterned Substrate
- High Efficiency LED with Optimized Photonic Crystal Extractor
- Packaging Technique for the Fabrication of Polarized Light Emitting Diodes
- LED Device Structures with Minimized Light Re-Absorption
- III-V Nitride Device Structures on Patterned Substrates
- Growth of Semipolar III-V Nitride Films with Lower Defect Density
- Improved GaN Substrates Prepared with Ammonothermal Growth
- Enhanced Optical Polarization of Nitride LEDs by Increased Indium Incorporation
- Semipolar-Based Yellow, Green, Blue LEDs with Improved Performance
- Hexagonal Wurtzite Type Epitaxial Layer with a Low Alkali-Metal Concentration
- Photoelectrochemical Etching Of P-Type Semiconductor Heterostructures
- Highly Efficient Blue-Violet III-Nitride Semipolar Laser Diodes
- Semi-polar LED/LD Devices on Relaxed Template with Misfit Dislocation at Hetero-interface
- Limiting Strain-Relaxation in III-Nitride Heterostructures by Substrate Patterning
- Suppression of Defect Formation and Increase in Critical Thickness by Silicon Doping
- High Efficiency Semipolar AlGaN-Cladding-Free Laser Diodes
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-183)
- Low-Cost Zinc Oxide for High-Power-Output, GaN-Based LEDs (UC Case 2010-150)
- Nonpolar III-Nitride LEDs With Long Wavelength Emission
- Method for Increasing GaN Substrate Area in Nitride Devices
- Flexible Arrays of MicroLEDs using the Photoelectrochemical (PEC) Liftoff Technique
- Optimization of Laser Bar Orientation for Nonpolar Laser Diodes
- UV Optoelectronic Devices Based on Nonpolar and Semi-polar AlInN and AlInGaN Alloys
- Low-Droop LED Structure on GaN Semi-polar Substrates
- Improved Fabrication of Nonpolar InGaN Thin Films, Heterostructures, and Devices
- Growth of High-Performance M-plane GaN Optical Devices
- Method for Enhancing Growth of Semipolar Nitride Devices
- Transparent Mirrorless (TML) LEDs
- Technique for the Nitride Growth of Semipolar Thin Films, Heterostructures, and Semiconductor Devices
- Planar, Nonpolar M-Plane III-Nitride Films Grown on Miscut Substrates
- High-Efficiency, Mirrorless Non-Polar and Semi-Polar Light Emitting Devices
- High Light Extraction Efficiency III-Nitride LED
- Tunable White Light Based on Polarization-Sensitive LEDs
- Method for Improved Surface of (Ga,Al,In,B)N Films on Nonpolar or Semipolar Subtrates
- Improved Anisotropic Strain Control in Semipolar Nitride Devices
- III-Nitride Tunnel Junction with Modified Interface
- Hybrid Growth Method for Improved III-Nitride Tunnel Junction Devices
- Contact Architectures for Tunnel Junction Devices
- Internal Heating for Ammonothermal Growth of Group-III Nitride Crystals
- Methods for Fabricating III-Nitride Tunnel Junction Devices
- Multifaceted III-Nitride Surface-Emitting Laser
- Laser Diode System For Horticultural Lighting
- Fabricating Nitride Layers
- Vertical Cavity Surface-Emitting Lasers with Continuous Wave Operation
- Laser Lighting System Incorporating an Additional Scattered Laser
Tech ID/UC Case
23890/2014-416-0
Related Cases
2014-416-0
- *Abstract
-
A novel device structure for III-nitride devices grown on non-polar or semipolar planes.
- *Applications
-
· Light emitting diodes (LEDs)
· Laser diodes (LDs)
- *IP Issue Date
- Nov 3, 2016
- *Principal Investigator
-
Name: Robert Farrell
Department:
Name: Shuji Nakamura
Department:
Name: Claude Weisbuch
Department:
- Country/Region
- USA
For more information, please click Here

