AsiaIPEX is a one-stop-shop for players in the IP industry, facilitating IP trade and connection to the IP world. Whether you are a patent owner interested in selling your IP, or a manufacturer looking to buy technologies to upgrade your operation, you will find the portal a useful resource.

A system and method for polarization measurement (Yeda)

A beam of light has several properties which can be measured for a variety of applications. The most commonly measured properties of light include Intensity, Color, Phase, and Polarization.In recent years there has been a growing demand to have well-defined optical beams. In order to accomplish this a light beam requires fast, accurate, and simple measurement techniques to fully characterize it’s properties.Currently, the ability to measure light polarization exists only qualitatively and at only one specific point in a light beam. Our scientific team has developed a new method to measure changing light polarizations in real-time.
Our demonstrated system presents a simple way to continuously measure and quantify light polarizations in real-time, throughout the entire length of a light beam. This method has the potential to set a new industry standard, and could lead to a number of applications that were previously not possible.
Technology Benefits
Proved accuracy
Simple technique
Compact configuration
Incorporate into existing equipment
Can measure fully polarized, partially polarized, and un-polarized light
Two modes of operation: Space-variant polarization measurements and Wavelength-variant polarization measurements
Technology Application
Molecular imaging
Medical and industrial lasers
Non-destructive testing
Analytical chemistry
Fiber-optic communications
Our polarization measurement technique is based on splitting an input light beam into six parallel beams, each having a predetermined shift in the polarization state with respect to the other beams. The beam components are simultaneously detected using a pixel matrix, such as a CCD camera, to determine their intensity distribution. From this, the polarization state distribution along the cross-section of the input optical beam is determined and we can calculate the Stokes parameters, a set of values which defines polarized light. This allows us to characterize and quantify fully polarized, partially polarized, and un-polarized light at every point in the beam in real-time, with either static or dynamic polarization states. Our method can be applied for two conditions of varying polarizations – changing with position (space-variant) or changing in color (wavelength-variant).

For more information, please click Here
Mobile Device