Search
  • 網站搜尋
亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。
返回搜索結果

System and Method for Flexible Low-Energy Membrane-Based Liquid Purification


技術優勢

Effective operation within the membrane array design limits High energy efficiency Energy-optimal operation of process components Includes methods for flow regulation  Instrumentation for system monitoring and control


技術應用

Liquid purification Ultrafiltration Nanofiltration


詳細技術說明

The inventors have developed a single-system platform and method that combines flexible and low-energy membrane-based liquid purification. To achieve this, the system is decoupled into separate but connected process units for liquid purification (via a membrane process unit) and for flow regulation, using a concentrate recycle unit for control of overall system product water recovery. This platform has been applied to reverse osmosis to devise a Flexible Low-Energy Reverse Osmosis (FLERO) system and method. The system can be operated in either cyclic unsteady-state mode or steady-state mode.


申請號碼

20170334747


其他

State Of Development

The inventors have developed a FLERO prototype and designed and implemented algorithms and software for its use. Operations in steady-state and cyclic unsteady-state modes have been demonstrated both in laboratory and in the field (seawater and groundwater desalination and water purification).


Background

Membrane technologies play a significant role in water and energy sustainability. Current membrane technologies that are used in industries at scale include desalination of seawater and brackish water by reverse osmosis (RO), as well as water purification and wastewater treatment by ultrafiltration, nanofiltration and RO membranes. However, there lies a challenge in achieving optimal performance of a number of properties within in a single platform. These include a wide range of product water recovery levels, integration of energy-optimal and operational flexibilities that will allow self-adaptive regulation of system product water recovery, and on-demand switching between steady state (i.e., continuous) and cyclic unsteady-state model of operation without requiring stoppage of water production. Therefore, there is an urgent unmet need for a single-platform membrane-based liquid purification system that performs with high operational flexibility and energy efficiency.


Additional Technologies by these Inventors


Tech ID/UC Case

29517/2016-871-0


Related Cases

2016-871-0


國家/地區

美國

欲了解更多信息,請點擊 這裡
Business of IP Asia Forum
桌面版