Search
  • 網站搜尋
亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。
返回搜索結果

Glycoconjugates of Antiproliferative Iron Pro-Chelators Targeting Cancer Cell Metabolism


詳細技術說明

Technology ID: UA15-085 Technology Background: Cancer cells require higher iron levels in order to sustain fast proliferation rates, and have high glucose demands to sustain growth. This vulnerability of malignant behavior can be targeted by the use of small-molecule chelators that interfere with the availability of intracellular iron. Because the ability to decrease iron levels offers an opportunity to slow or halt tumor growth, iron chelation is emerging as a potential anti-cancer therapeutic avenue. The key to success of chelation therapy in cancer treatment, however, is the capacity to target iron in malignant cells selectively over normal tissues and iron in the extracellular space. Lacking such selectivity, currently available iron chelators have elicited adverse side effects when employed in cancer research, and none of the iron chelators used for iron overload blood disorders have received approval for a cancer indication to date.  Invention: This technology provides novel glycoconjugates of antiproliferative iron pro-chelators that target the altered metabolism of cancer cells. Advantages: One advantage of the current invention is that the technology concurrently exploits physiological characteristics of malignant cells, offering therapeutic efficacy with reduced or minimal side effects. This new generation of chelators disrupts cancer cell metabolism through selective iron deprivation. This technology holds high promise for success by exploiting aspects of cancer physiology that are not targeted by current clinical chemotherapy, namely:  (1) their marked glucose avidity; and (2) their susceptibility to iron deprivation.  Applications: The key to the success of chelation therapy in cancer treatment is the ability to target iron ions in malignant cells without affecting iron levels in the bloodstream and in normal tissues. Lacking such selectivity, currently available chelators have been found to elicit adverse side effects when employed in cancer research. The success of this technology centers on the iron pro-chelators with a glucose-targeting unit, allowing for selective targeting of malignant cells. By selectively depriving cancer cells of a key metal ion essential for their rapid proliferation, this approach could lead to the development of efficacious and safe anti-cancer therapeutic candidates. Patent Status: Provisional patent pending Lead Inventor: Dr. Elisa Tomat Licensing Manager:Laura SilvaLauraS@tla.arizona.edu(520) 626-1557


國家/地區

美國

欲了解更多信息,請點擊 這裡
Business of IP Asia Forum
桌面版