Fuel Cells Using Low-Temperature Conducting Materials
Lower operating temperatures (i.e., 50 - 100°C) Avoids deleterious effects of high temperature on electrodes and related components
Manufacturers of oxide fuel cells and those involved in hydrogen separation
Researchers at the University of California, Davis have developed a novel method to fabricate nanometric oxides that exhibit enhanced conductivity. Conduction in these materials (e.g., cubic zirconia and other materials with similar properties) takes place by protonic movement as opposed to ionic mobility, making it possible to operate a fuel cell at much lower temperatures. The marked reduction of the resistivity in these materials at low temperatures are comparable to that typical of other protonic conductors but with the advantage of superior mechanical properties, chemical stabilities, and the lack of a need for a catalyst.
Patent Number: US7601403B2
Application Number: US2005107321A
Inventor: Anselmi-Tamburini, Umberto | Munir, Zuhair A. | Garay, Javier E.
Priority Date: 15 Apr 2005
Priority Number: US7601403B2
Application Date: 15 Apr 2005
Publication Date: 13 Oct 2009
IPC Current: B05D000306
US Class: 427545 | 419045 | 419048 | 419051 | 419052 | 427458 | 427591
Assignee Applicant: The Regents of the University of California
Title: Preparation of dense nanostructured functional oxide materials with fine crystallite size by field activation sintering
Usefulness: Preparation of dense nanostructured functional oxide materials with fine crystallite size by field activation sintering
Summary: For preparing dense nanometric ceramic material or product such as zirconia, samarium-doped ceria, yttrium aluminum garnets, alumina, other functional oxides and combination (all claimed) used in various application such as fuel cell, laser application, high pressure sodium lamp and other sensor applications.
Novelty: Dense nanometric ceramic material preparation, for fuel cell, involves applying electric current to heat precursor, while keeping temperature below sufficient level for high degree of compaction and limited grain growth
化工/材料
燃料電池
7601403
Related Materials Anselmi-Tamburini U, Maglia F, Chiodelli G, Riello P, Bucella S, and Munir ZA. 2006. Enhanced low-temperature protonic conductivity in fully dense nanometric cubic zirconia. Appl. Phys. Lett. 89, 163116. Additional Technologies by these Inventors Tech ID/UC Case 11235/2005-510-0 Related Cases 2005-510-0
Kim S, Anselmi-Tamburini U, Park HJ, Martin M, and Munir ZA. 2008. Unprecedented Room-Temperature Electrical Power Generation Using Nanoscale Fluorite-Structured Oxide Electrolytes. Adv. Mater. 20, 556–559
美國
