Search
  • 网站搜寻
亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。
返回搜索结果

Acquisition of Multidimensional NMR Spectra in a Single Scan (Yeda)


总结

A method to significantly shorten acquisition times of high-quality MRI images.

Multidimensional nuclear magnetic resonance (NMR) is used nowadays in many applications (e.g., discovery of new pharmaceutical drugs, characterization of new catalysts, and investigation of the structure and dynamics of proteins). One drawback of this technique is that, by contrast to one-dimensional spectroscpic methods, multidimensional NMR requires relatively long measurement times associated with hundreds or thousands of scans. This places certain kinds of rapidly-changing systems in Chemistry outside the scope of the technique. Long acquisition times also make this technique ill-suited for in vivo analyses and for clinical measurements in combination with magnetic resonance imaging (MRI). The current technology allows for the acquisition of multidimentional NMR scans using a single continuous scan, thereby shortening the time needed to acquire high-quality MRI images.


技术优势

Can shorten the acquisition time of any multidimensional spectroscopy experiment by orders of magnitude
Compatible with the majority of multidimensional pulse sequences
Can be implemented using conventional NMR and MRI hardware


技术应用

In vivo diagnostics
High-throughput proteomics/metabonomics
NMR of unstable chemical systems
Metabolic dynamics
High-resolution NMR in tabletop systems
Extensions to non-MR spectroscopies


其他

The outlined approach, called ultrafast multidimensional NMR, significantly expedites the analysis of the electromagnetic sounds produced, making it possible to acquire complete multidimensional NMR spectra within a fraction of a second. This technology “slices up” the molecular sample into numerous thin layers and then simultaneously performs all the measurements required on every one of these slices. The protocol then integrates these measurements according to their precise location, generating an image that amounts to a full multidimensional spectrum from the entire sample.


ID号码

1151


国家/地区

以色列

欲了解更多信息,请点击 这里
Business of IP Asia Forum
桌面版