亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Biosensors For Measuring The Metastatic Potential And Chemoresistance Of Single Cancer Cells

技術優勢
This assay is capable of measuring the metastatic potential and/or chemoresistance of single living cancer cells.
技術應用
These findings provide proof-of-concept that IMPs can measure the diversity and plasticity of metastatic potential of tumor cells in a sensitive and unbiased way. Furthermore, this assay measures the metastatic potential and/or chemoresistance of single living cancer cells.
詳細技術說明
Researchers at UC San Diego have developed a Fluorescence Resonance Energy Transfer (FRET) biosensor that measures the metastatic potential of single living cancer cells. Molecular imaging of metastatic ‘potential’ is a challenge. To engineer biosensors that can detect and measure metastatic 'potential' of single living cancer cells, a comprehensive analysis of the pan-cancer phosphoproteome was carried out to search for actin-remodelers required for cell migration, that are enriched in cancers, but excluded in normal cells. Only one phosphoprotein (PP) emerged, which was a bona-fide metastasis-related protein found in a variety of solid tumors. The next step was to design a multi-modular biosensors that are partly derived from the PP, and because PP integrates pro-metastatic signaling by multiple oncogenic receptors, and named them ‘Integrator-of-Metastatic-Potential (IMP)'. IMPs captured the heterogeneity of metastatic potential within primary lung and breast tumors at steady-state, detected those few cells which have acquired the highest metastatic potential and tracked their enrichment during metastasis
*Abstract

Metastasis is a complex process in which cancer cells migrate from the primary tumor, invade into the vasculature, and travel to distant parts of the body to establish secondary tumors. Cells with a greater metastatic potential have a proclivity for leading migration away from the primary tumor. Progress in identifying cells primed to metastasize and in assessing metastatic risk has been slow. This may be due in part to the lack of consistent molecular prognostic markers between cancer types and significant heterogeneity in metastatic potential within the tumor. Furthermore, not all tumors are metastatic and determining the metastatic proclivity of single tumor cells remains a major challenge. Another looming scientific question is estimating the metastatic “potential” because conventional techniques, e.g., Immunohistochemistry (IHC) are not capable of this and only molecular imaging can resolve these issues. So far, improved imaging platforms have helped detect established metastases and assessed tumor cell properties such as surrogate markers of metastatic potential. However, single cell-based assays to measure the dynamic pro-metastatic signaling programs that contribute to the 'potential' for metastasis remains a Holy Grail.

*Principal Investigation

Name: Pradipta Ghosh

Department:


Name: Pradipta Ghosh

Department:

其他

State Of Development

A working prototype has been made


Intellectual Property Info

This technology is patent pending and available for licensing.


Tech ID/UC Case

29562/2018-309-0


Related Cases

2018-309-0

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備