亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Bactericidal Surface Patterns

技術優勢
Non chemical based. Prevents problems related to chemical-resistant bacteria.
技術應用
Biomedical implants and other surfaces where antibacterial properties are important.
詳細技術說明
Cellular interactions with biomedical materials are critical to the performance of medical devices. Bioflim build-up is one major cause of failure for prosthetic implants. Researchers have modified the surface chemistry of biomaterials with biocide-releasing or anti-adhesion coatings, but these are not long-term solutions. There has been increasing interest in designing nanostructured surfaces inspired by nature. Recently, researchers found that nanoscale pillar structures on the cicada wing surface had the ability to kill bacterial cells purely through physical surface topography. Here UCI researchers are developing methods that can prevent bioflim buildup through physical surface modifications similar to structures found in nature. We created nanostructures on polymethylmethacrylate (“imprinted PMMA”). Once we made imprinted PMMA films, we plated Escherichia coli on flat and imprinted PMMA films and incubated the samples. Bacterial cells were observed using optical microscopy and scanning electron microscopy (SEM). SEM micrographs were obtained without metal coating. Using optical microscopy, we were able to see bacterial cells on the surface of both flat and imprinted PMMA films, verifying that there was bacterial adhesion on the samples. With SEM, we observed bacteria morphology and distribution on the different PMMA samples. On the flat PMMA control surface, bacteria were rodshaped, the normal morphology of E coli, and randomly distributed on the surface. On nanoLINE structures, bacteria were also rod-shaped, but most cells were oriented either along or perpendicular to the lines. Some cells along the lines became elongated. On nanoPILLARS, bacteria were randomly dispersed and appear more deflated on the pillars. We noticed that the bacteria conformed roughly to the spacing between pillars and were surrounded by cytoplasm. Many cells have also become quite elongated. The leakage of cytoplasm indicates that nanopillar structures provide bactericidal properties to the PMMA film. We have illustrated the potential of imprinted polymer nanostructures to guide or prevent bacteria adhesion and impact the development of implantable devices by providing greater adhesion control by surface nanotexture without chemical modifications to the polymer surface. This will remove the uncertainty of proving longterm biocompatibility of a new system or chemical substance and facilitate quick implementation of the device into surgical practice. Results from this study provide a safe method for surface engineering of biomedical implants.
*Abstract
None
*IP Issue Date
Oct 1, 2015
*Principal Investigation

Name: Markelle Gibbs

Department:


Name: Nicole Ing

Department:


Name: Elena Liang

Department:


Name: Albert Fan Yee

Department:

申請號碼
20150273755
其他

Tech ID/UC Case

23966/2013-722-0


Related Cases

2013-722-0

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備