Self-Curved Diaphragms By Stress Engineering For Highly Responsive pMUT
- 技術優勢
- - 95% wafer utilization- Foundry-based CMOS process- Frequency tuning to desired value- Both low frequency and high frequency pMUT arrays
- 技術應用
- - Ultrasonic gesture recognition- Range finding- Finger print identification- Medical imaging and diagnosis- Sensors in hand-held devices
- 詳細技術說明
- None
- *Abstract
-
Curved pMUTs, as developed at UC Berkeley, have been shown to have 2 orders of magnitude improvement over flat pMUTs as well as the capacity for post-processing tuning. However, it is desirable to improve production methods to make this innovation more commercially applicable.
To meet this challenge, investigators at Berkeley have developed a self-curved diaphragm process using stress engineering to produce highly responsive curved pMUTs. This diaphragm pMUT can boost 6X better performance compared to the flat diaphragm state-of-the-art pMUT. CMOS foundry-based process flow has produced self-curved diaphragms by engineering residual stress in thin films to construct molds for fabrication. Benefits of the invention include achieving silicon curved molds by patterning thin layers of stressed silicon nitride and silicon oxide layers on top of a silicon plate of a predetermined thickness.
- *IP Issue Date
- Jul 30, 2015
- *Principal Investigation
-
Name: Sina Akhbari
Department:
Name: Liwei Lin
Department:
Name: Firas Sammoura
Department:
- 申請號碼
- WO2015112452
- 其他
-
Additional Technologies by these Inventors
- Wafer Level Chip Scale Packaging Technology For Integrated Mems Devices
- Highly Responsive PMUT
- Cross Reactive FET Array for Gas Mixture Detection
- Shaped Piezoelectric Micromachined Ultrasonic Transducer Device
- Piezoelectric Micromachined Ultrasonic Transducer Device and Methods
- Advanced Chemical Sensing Method and Apparatus
Tech ID/UC Case
24472/2015-050-0
Related Cases
2015-050-0
- 國家/地區
- 美國
欲了解更多信息,請點擊 這裡
