亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Polymer for Heat-Tolerant Fuel Cell Membranes

詳細技術說明
None
*Abstract

Sulfonated Polyethylene Maintains Efficiency in Temperatures above 176 degrees Fahrenheit

This polymer, polyethylene substituted with regularly spaced sulfonic acid groups, is a promising material for use in the fuel cells that power cars, phones, laptops, and spacecraft. Fuel cells are electrochemical energy conversion devices that transform chemical energy trapped in various fuels, such as sugarcane, into useable electricity. A traditional hydrogen fuel cell, for example, converts hydrogen and oxygen into water and electricity. The electricity produced by fuel cells can power a wide range of consumer and industrial products, including vehicles and portable electronics. The United States government has invested more than one billion dollars in fuel cell research and development. Until now, the tendency for fuel cells to become less efficient at higher temperatures has prevented the technology from reaching its full potential. Researchers at the University of Florida have addressed this problem by developing a heat-tolerant polymer that functions well in temperature above 176 degrees Fahrenheit (80 degrees Celsius). In 2010, fuel cell industry revenues exceeded $750 million. This polymer has the potential to substantially increase the size of the market.

Application

Sulfonated polyethylene polymer for use in fuel cells that maintain high-level efficiency at temperatures above 176 degrees Fahrenheit

Advantages

  • Features a durable design, ensuring greater fuel cell efficiency at higher temperatures
  • Compatible with available manufacturing equipment, enhancing versatility
  • Removes a barrier to widespread adoption of fuel cell-powered vehicles, reducing dependence on gasoline

Technology

University of Florida researchers have created a sulfonated polyethylene polymer that, when incorporated into fuel cells, enables greater efficiency at temperatures above 176 degrees Fahrenheit (80 degrees Celsius). The material has many promising applications, including widespread use in automotive fuel cell membranes. The researchers prepared the polymer by suspending a sulfonated ester polyethylene in a polar aprotic non-solvent to which they added a strong base that saponifies the esters.
*Principal Investigation

Name: Kenneth Wagener

Department:


Name: Taylor Gaines

Department:

其他
國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備