亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

High-Power Damage-Resistant XUV Bandpass Filter

技術優勢
Transmits XUV beams in a broad energy range High damage threshold Endures IR pump energy up to hundreds of mJ Low-cost and simple to implement
技術應用
Medical diagnostics XUV lithography Radiography
詳細技術說明
HHG generated pulses in the XUV and SXR spectral ranges, from several eV to keV energies, pass through the MCP filter while IR and NIR wavelengths are reflected, allowing for rejection of up to hundreds of mJΓÇÖs of pump light, an amount unmatched by any other technique. The filtering works analogous to that of a microwave door, where the wavelengths smaller than the dimensions of the periodic structure can propagate through, while those larger become evanescent and reflect off the structure. The MCP is fabricated from a resistive material, such as glass, with a dense array of parallel microchannels (typically 5-25 micrometers in diameter) leading from one surface to the other. Since this XUV filter blocks infrared pump source light, it is especially useful for next-generation mid-infrared pump lasers, the future for generating even shorter attosecond pulses.
*Abstract
UCF researchers have developed an advanced optical filtering method with a very high damage threshold to separate XUV wavelengths greater than 200 eV from the pump laser pulse often containing tens or hundreds of millijoules (mJ) of energy per pulse. Compared to conventional methods, this technique is easier to implement and can be used for HHG ultra-broadband XUV generation, isolated attosecond pulse generation, and high flux attosecond SXR generation based on HHG. With easy installation and a high damage threshold, the filter offers significant advantages over fragile thin metal foil filters, which have been unable to withstand high-intensity pump light and vibration. This new filter can greatly improve commercial HHG-based XUV sources for applications such as medical diagnostics, XUV lithography, and radiography of shielded structures by significantly improving the XUV pulse to pump signal ratio.
*Principal Investigation

Name: Zenghu Chang, Ph.D.

Department:


Name: Qi Zhang

Department:


Name: Kun Zhao, Ph.D.

Department:

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備