亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。

Blocking Fragment Of CDCP1

技术优势
Utilizes CDCP1 as a novel therapeutic target for treating breast cancer as opposed to hormone receptorsMore effective at reducing tumor metastasis and preventing recurrence than generalized therapies (radiation, chemotherapy)
技术应用
Treatment for triple-negative breast cancer and other breast cancers
详细技术说明
Triple-negative breast cancer (TNBC) refers to any breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR) or Her2/neu. There are currently no targeted therapies to treat TNBC and approximately 34% of TNBC patients experience recurrence or metastasis within five years of radiation and chemotherapy treatment. Researchers at UCI have identified a protein found on cell surfaces called CUB-domain containing protein 1 (CDCP1). CDCP1 controls fat metabolism by lowering fat levels inside cells, thus causing more fatty acid oxidation (FAO), which has been linked to metastasis of TNBC. As a method to target cancer cells that lack hormone receptors, blocking fragment that inhibit CDCP1 activity have been developed. Specifically, the fragment blocks CDCP1 dimerization, reducing FAO. Reduction of FAO is accompanied with inhibition of tumor growth and reduced metastasis.
*Abstract

Triple-negative breast cancer (TNBC) refers to any breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR) or Her2/neu. TNBC is difficult to treat since most hormone therapies target one of these receptors. Researchers at UCI have developed a therapeutic that bypasses these receptors, and instead targets fatty acid oxidation, a process linked to TNBC.

*Principal Investigation

Name: Olga Razorenova

Department:


Name: Heather Wright

Department:

其他

State Of Development

Efficacy of CDCP1 function-blocking has been shown in vitro and in vivo in two animal models of TNBC.


Related Materials

Write. H.J., et. al. CDCP1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc. Acad. Nat. Sci. 2017, 114, E6556.
Write. H.J., et. al. CDCP1 cleavage is necessary for homodimerization-induced migration of triple-negative breast cancer. Nature Oncology. 2016, 35, 4762.


Tech ID/UC Case

29113/2018-064-0


Related Cases

2018-064-0

国家/地区
美国

欲了解更多信息,请点击 这里
移动设备