亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。

Electron-Beam Lithography

总结
Researchers at Purdue University have a developed a new technology that utilizes a novel device to focus optical energy at nanoscale and locally excite electrons to form massively parallel electron beams, which can be used to perform maskless lithography in mass quantities. Maskless lithography can write finer features by rastering a nanometer-sized beam or probe to generate surface patterns and has been applied to niche applications such as device prototyping and low-volume production. Among all maskless methods, electron beam lithography can provide high resolution beyond the 10-year industry roadmap. Electron-beam lithography also has the highest scanning speed. This technology could be used for top-down nanomanufacturing methods to carry on the trends of ever decreasing critical dimensions and ever increasing design complexities of semiconductor chips at a relatively low cost.
技术优势
Focuses optical energy at nanoscalePerform maskless lithography in mass quantitiesHighest scanning speedSemiconductor chip design at a lower cost
技术应用
Semiconductor industryFurther development of nanotechnologyPhotonics and biological systems
详细技术说明
Liang PanLaboratory of Plasmon-Assisted NanomanufacturingPurdue Mechanical Engineering
*Abstract

*Background
Optical lithography, the process of transferring geometric shapes on a mask to a wafer, has been the critical enabling step for determining nanotechnology device performances such as the transistor density and speed in microprocessors. Tools currently used to transfer fixed geometric patterns on a mask to wafers in the production of semiconductor chips cost more than $50 million each, and the mask cost far outweighs the cost of tools. Designed to match chip capabilities with Moore's Law, next generation tools will be far too costly for both industry and scientists. Researchers have focused on developing massively parallel electron beam lithography and achieved 2 to 3 orders of magnitude throughput enhancement using a variety of methods, but the roadblock has been the lack of an enabling technology to generate millions of high-quality electron beamlets with satisfactory brightness and uniformity. In addition, the current process cannot meet long-term demand to produce faster chips with more functions.
*IP Issue Date
None
*IP Type
Provisional
*Stage of Development
Process Validation in Lab
*Web Links
Purdue Office of Technology CommercializationPurdueInnovation and EntrepreneurshipLiang PanLaboratory of Plasmon-Assisted NanomanufacturingPurdue Mechanical Engineering
国家
United States
申请号码
None
国家/地区
美国

欲了解更多信息,请点击 这里
移动设备