亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Submerged Organ Printing

總結
Method of 3D-Printing of cell-containing hydrogel structures with high geometrical complexity.
技術優勢
Platform technology for generating different tissue models with high geometrical flexibility in a highly precise and replicable process.
技術應用
The present inventions allows for new strategies in the 3D-cell-printing of tissue substitutes.
詳細技術說明
Bioprinting technologies recently appeared as important tissue engineering alternatives for regenerative medicine and organ transplantation. This novel approach for printing of tissues substitutes is based on the submersion of simultaneously printed cell-hydrogel structures into a non-toxic perfluorodecalin liquid substrate. Not only the development of a robotic plattform for 3D-printing has been performed, but also the combination of natural or synthetic hydrogels with human mesenchymal stem cells.
The present invention allows to print the conduits submerged in non-miscible solvents of high density, such as fluorocarbons (e.g. C12F27N), that support the printed structure while it is being generated resulting in superior performance in relation to other methods. The hydrophobicity and high density of the fluorocarbon help to control the deposition of each individual droplet, resulting in a high degree of precision of the 3D-printed construct, which has been proven to remain long-term stable. Furthermore, live/dead- and DAPI-staining showed viable cells 24 h after the printing process, as well as after 21 days in culture.
In a special embodiment, the invention describes a simpler way of reproducing the structural hierarchy of multiple tissue substitutes using an inkjet drop-on-demand (DoD) bioprinting approach. This novel strategy for cell printing can therefore be used in the future for broad applications in the field of tissue engineering and regenerative medicine. In particular the method is suitable for printed tissue substitutes with high geometrical complexity.
合作類型
Licensing
申請日期
02.02.2012
01.02.2013
申請號碼
DE 10 2012 100 859.0
EP 2013/052046
其他
No CN patents
ID號碼
3067-5117
國家/地區
德國

欲了解更多信息,請點擊 這裡
移動設備