High-Throughput Microfluidic Gene-Editing via Cell Deformability within Microchannels
No fouling or clogging of channelsScalable and compatible using current manufacturing processesFaster and less toxic than current methods of cellular transfectionCould prepare all the cells necessary for a 12-kg child’s gene-modified bone marrow transplant in one hour, instead of many hours and additional processing steps
Use in gene therapy to deliver gene editing-related biomolecules to cells (CRISPR/Cas9)Live-cell protein labeling and imaging Immune cell activation for cancer immunotherapyDelivery of small-molecule drug candidates
The inventors have designed a microfluidic device for cell transfections that is able to circumvent the issues of fouling and clogging. The inner surfaces are covered by an omniphobic slippery liquid layer coating and also contain anti-fouling nanofeatures. This strategy estimates a transfection rate of 50,000 cells/sec, which is significantly faster than the current gold standards of viral vectors and electroporation.
Background Gene therapy and gene modification technologies are increasingly being studied and developed for clinical applications. One of the main limitations towards realization of these types of technologies is an efficient, cost-effective means for insertion of genetic material into the cell, or transfection. Current gene delivery systems, such as viral vectors or electroporation, are limited by cost, difficult scale-up and time-intensive processing. Intracellular delivery of biomolecules by cell membrane deformation within microfluidic devices has been demonstrated previously, where target cells are temporarily deformed as they pass through channels. In the deformed state, gene-editing biomolecules (e.g., CRISPR-CAS9 constructs, RNA/DNA, enzymes) are able to pass through the cell membrane. However, this technology is largely limited by the accumulation of biomatter on channel surfaces, known as fouling, resulting in clogged devices. Related Materials Additional Technologies by these Inventors Tech ID/UC Case 29046/2017-109-0 Related Cases 2017-109-0
美國
