亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

qPCR Analysis Software

技術優勢
Takes advantage of later cycles Formalized baseline adjustments Works even with high signal-to-noise ratioΓÇÖs
詳細技術說明
UCF researchers developed a simple mathematical model that accurately describes the entire PCR reaction profile using only two reaction variables that depict the maximum capacity of the reaction and feedback inhibition. This model allows quantification that is more accurate than existing methods and takes advantage of the brighter fluorescence signals from later cycles. Because the model describes the entire reaction, the influences of baseline adjustment errors, reaction efficiencies, template abundance, and signal loss per cycle could be formalized. We determined that the common cycle-threshold method of data analysis introduces unnecessary variance because of inappropriate baseline adjustments, dynamic reaction efficiency, and also a reliance on data with a low signal-to-noise ratio. An additional benefit of the global fitting method described here is that researchers can evaluate the quality of their raw reaction data against a idealized model to better address experimental artifacts.
*Abstract
Quantitative polymerase chain reactions (qPCR) are used to monitor relative changes in very small amounts of DNA. One drawback to qPCR is reproducibility: measuring the same sample multiple times can yield data that is so noisy that important differences can be dismissed. Numerous analytical methods have been employed that can extract the relative template abundance between samples. However, each method is sensitive to baseline assignment and to the unique shape profiles of individual reactions, which gives rise to increased variance stemming from the analytical procedure itself.
*Principal Investigation

Name: Sean Moore Ph.D.

Department:

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備