亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Improved Algorithm to Count Dense Crowds

技術優勢
Handles higher crowd densities Requires only still images
技術應用
Crowd management Event attendance News reporting
詳細技術說明
The new method from UCF to count dense crowds of people works by analyzing an image at multiple densities. Although the density of people varies across the image, adjacent patches should be similar allowing for an accurate estimate by counting individuals in small patches. In medium density crowds, the process recognizes the periodic occurrence of heads ΓÇô the harmonics, which it captures through Fourier analysis, and, in high density crowds, the texture of the crowd is captured through scale-invariant feature transform. The algorithm functions with new constraints in multi-scale Markov random field to infer a single count over the entire image.
*Abstract
While dense crowds occur frequently in ticketed events like concerts, marathons, religious ceremonies, and sports games, obtaining a count of participants is relatively easy. However, in events where participants are not registered, measuring the number of constantly shifting attendees often becomes crucial as in the cases of political speeches and public protests. Determination of the exact size of a crowd can be important to candidates, the media, or law enforcement, and relying on human estimation or inadequate algorithms can lead to errors. A need for a method to accurately count dense crowds in still images or video is needed.Instead of manually counting individuals in very dense crowds, this algorithm automatically provides an accurate head count from video or still images. Existing crowd-counting algorithms cannot distinguish individuals in crowds of hundreds or thousands, resulting in counting errors. Most of the existing algorithms for exact counting have been tested on low to medium density crowds (3-53 people per frame). In contrast, the new algorithm produces accurate counts from still images or video containing an average of 1,280 people per frame.
*Principal Investigation

Name: Haroon Idrees

Department:


Name: Imran Saleemi

Department:


Name: Mubarak Shah, Ph.D.

Department:

國家/地區
美國

欲了解更多信息,請點擊 這裡
移動設備