亞洲知識產權資訊網為知識產權業界提供一個一站式網上交易平台,協助業界發掘知識產權貿易商機,並與環球知識產權業界建立聯繫。無論你是知識產權擁有者正在出售您的知識產權,或是製造商需要購買技術以提高操作效能,又或是知識產權配套服務供應商,你將會從本網站發掘到有用的知識產權貿易資訊。

Cancellation of Non-linear Interference in Optical Fiber Communication (Ramot)

總結
New cloud services and abundant video communication over the network leads to a steady exponential increase, at a rate of over 60% per year, in the demand for transmitted data over the network backbone composed of optical fibers. Such growth-rates imply doubling of the demand for transmitted data every year and a half. Unfortunately, the communication rate per fiber is limited, and one of the main factors for this limitation is fiber non-linearity. In WDM systems, the non-linear physical phenomena in the fiber induce non-linear interactions between the different channels, generating complicated distortions of the transmitted optical signals. These distortions essentially diminish the system capability to decode the transmitted data and impose fundamental limits on the achievable communication rates. So far the non-linear distortions were considered as non-cancellable “noise” and were treated as additive white Gaussian noise, independent of the data of interest. This approach limits the achievable communication rates and essentially ignores the fact that the dynamics of the non-linear effects are slow, so non-linear noise mitigation can be applied to obtain higher throughput rates.The theoretical research has led to the understanding that the effects of the nonlinear interference (NLIN) between the various channels in wavelength division multiplexed (WDM) environment can be described as time-varying inter-symbol interference (ISI) between the samples of the desired signal. The ISI coefficients depend on the interfering signals and, as our analysis showed, due to the differences in the group velocities, the coefficient are slowly time-varying – at the order of tens and even hundreds samples. This phenomenon gives rise to the capability to track the ISI coefficients and cancel the NLIN. The main goal of this research is to develop methods to perform the cancelation and as a result enable higher communication rates, or higher reach in fiber optic channels. Specifically, the main objective can be divided into several tasks - specification of the principal algorithms and schemes that can track the ISI coefficients and perform cancellation based on that estimate, complexity optimization and fixed-point implementation of the specified algorithm, designing coded modulation schemes to fit the channel after NLIN cancellation, and finally incorporate the developed algorithms in a full end-to-end modem simulation.The theoretical research that has led to the new model for the NLIN is mostly complete. It was well established that the non-linear effects are rigorously equivalent to a time varying ISI, where the ISI coefficients depend on the data that is transmitted through the neighboring WDM channels. Because of the chromatic dispersion phenomena in the optical fiber, the ISI coefficients were shown to exhibit very long temporal correlations, at the order of tens and even hundreds of samples. The theoretical model has recently corroborated by simulation, validating the theoretical model and the long temporal correlations. The gain in reducing the residual noise after NLIN cancelation was also established theoretically and through simulations. The gain was shown to be substantial – more than an order of magnitude in the noise level by cancelling only two ISI coefficients.
技術優勢
A simple, cost-effective diagnostic tool to predict lung cancer risk.
• The test enables the integration of multiple factors that are known to affect DNA-repair enzymes expression and activity, in contrast to polymorphism-based assays.
• Smokers who are diagnosed with low OGG1 activity can be advised to enter smoking cessation programs, as a way to reduce cancer risk. Such an approach based on personal susceptibility is expected to be more effective than a general warning on the hazards of smoking, as has been seen in the case of personal risk factors for cardiovascular diseases (e.g., personal cholesterol levels).
技術應用
US Patent pending
ID號碼
7-2013-675
國家/地區
以色列

欲了解更多信息,請點擊 這裡
移動設備