Search
  • 网站搜寻
亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。
返回搜索结果

Monolithic Integration of Ultra-Scaled High Performance Pin-Size Wearable Electronics


技术应用

This invention integrates sensors with amplifying and processing electronics and paves the way for integrating thin film batteries, gas, ion, radiation, and other types of sensors for larger scale applications. In addition, this invention can incorporate interactive displays composed of transparent layers, pressure sensors and read-out electronics, all on a flexible substrate. Commercial applications include “wearables” such as seamless pin-size smart skin mounts, jewelry, watches, clothes, or flexible displays. One target market is clinical patients wearable smart skin for athletes, smart phones, iPads and interactive electronics in general.  Further details are available under a non-disclosure agreement. Worldwide rights available for licensing.


详细技术说明

Engineers from UC San Diego have developed a seamless, compact and non-intrusive, high-sampling-speed biomedical sensor for health monitoring. The invention encompasses a novel system integration method of multi-modal, ultra-thin and highly integrated electronic sheets that can record from the human skin, process, and transmit electrophysiological data for medical purposes. This electrophysiological sensor with readout circuitry on ultra-thin flexible substrates technology is pin-sized. This is accomplished in a newly developed heterogeneous integration process in the inventors’ laboratories in which multi-functional and multi-layered devices are monolithically integrated onto a single handle substrate, and upon completion of the integrated system, the handle substrate is removed (see related technology 2015-074.) This unique approach improves upon the conventional devices because it can incorporate and integrate multiple circuit components without the need for wafer/bump bonding of discrete components and the resultant loss of resolution and performance during the bonding process, a typical problem in existing art.


申请号码

20180040649


其他

Related Technologies


Tech ID/UC Case

25044/2015-076-0


Related Cases

2015-076-0, 2015-208-0


国家/地区

美国

欲了解更多信息,请点击 这里
Business of IP Asia Forum
桌面版