亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。

Fully Balanced Micro-Machined Inertial Sensor

技术优势
· Device has high sensitivity and robustness to external vibrations. To the best of our knowledge this is the highest Q-factor degenerate mode gyroscope less than 2mmx2mm · Force and torque balanced is established on all axes, as opposed to a single axis balanced architecture seen in prior art. · Force and torque balance is obtained on all 3 degrees of freedom, providing immunity to vibrations along all axis. · Compared to prior art, the device is extremely simple in construction, utilizes a single mask fabrication process, and only two primary proof masses, making fabrication of the gyroscope very cost effective. · White noise of the gyro output is 1-2 orders of magnitude better than what is currently commercially available.
技术应用
o MEMS inertial sensor for use in consumer electronics and a wide variety of other applications such as in the automotive and aerospace industries
详细技术说明
This invention is a new balanced Coriolis vibratory gyroscope architecture that is force and torque balanced on both x and y modes. In contrast to tuning fork Coriolis vibratory gyroscopes, which are torque balanced only on one axis, this architecture is torque balanced on both axes (modes). As a result, anchor losses are minimized on not only one but two axes. This helps achieve high Q-factor on both modes of the Coriolis Vibratory Gyroscope and provides vibration immunity due to the force/torque balance. The design has also been shown to produce 1-2 orders of magnitude less white noise of the gyroscope output (ARW) than current commercial competitors. The mechanical element of the gyroscope design is comprised of two proof masses that are mechanically coupled to each other. The gyroscope can be built using any two arbitrary shaped lumped masses, provided that their centers of mass approximately collide with each other. RELEVANT BACKGROUND A Coriolis vibratory gyroscope (CVG) is a type of inertial sensor that uses a vibrating object or resonator to detect changes in motion, utilizing the principle that a vibrating object tends to continue vibrating in the same plane as its support rotates. As an example, one type of CVG, known as the tuning fork gyroscope, utilizes a pair of masses driven to resonance. Displacement of these masses from the plane of oscillation is detected and measured relative to the rotation of the system. Quality-factor (Q-factor), which relates the energy stored to the energy loss over a period of the resonator, is an important parameter that should be maximized for optimal gyroscope performance. In short, a higher Q-factor translates to lower energy dissipation. In order to maximize Q-factor, energy loss mechanisms of the resonator must be addressed. An important loss mechanism, anchor losses, are caused by acoustic losses into the substrate and are not well minimized in a standard tuning fork gyroscope, as they are torque balanced on only one axis and hence anchor losses are minimized in only one mode of vibration. This new gyroscope architecture minimizes anchor losses in both axes by decoupling the resonator and the substrate by using a dynamically balanced resonator structure, leading to a more maximal Q-factor.
*Abstract

· New balanced Coriolis vibratory gyroscope architecture

· Features:

o Force and torque balanced on both x and y modes

o Vibration immunity for gyroscope architecture

o High Q-factor on both modes

o Simple construction

o 1-2 orders of magnitude lower ARW or white noise output

*IP Issue Date
Mar 24, 2016
*Principal Investigation

Name: Doruk Senkal

Department:


Name: Andrei Shkel

Department:


Name: Sergei Zotov

Department:

申请号码
20160084654
其他

Other Information

http:// mems.eng.uci.edu/files/2015/05/DorukSenkal_ISISS_2015.pdf

http:// mems.eng.uci.edu/files/2015/07/Senkal_Transducers_2015.pdf


Tech ID/UC Case

25656/2015-139-0


Related Cases

2015-139-0

国家/地区
美国

欲了解更多信息,请点击 这里
移动设备