Search
  • 网站搜寻
亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。
返回搜索结果

Synthesis Technique to Achieve High-Anisotropy FeNi


技术优势

High magnetic anisotropy High Curie temperature Earth-abundant common elements Cost effective Less prone to price fluctuations Convenient manufacturing


技术应用

High energy density permanent magnets Magnetic recording Hybrid/electric vehicles Motors Generators MRI systems Magnetically levitated trains Wind turbines Power storage Consumer electronics (Cell phones, DVD/CD players, speakers) Magnetic refrigeration   Materials separation


详细技术说明

Magnetic anisotropy is a material property that anchors magnetic moments in place, enabling their practical use. High magnetic anisotropy materials are essential to the advancement of high energy density permanent magnets and ultrahigh density heat-assisted magnetic recording media. Current leading alloy candidates for recording media applications and permanent magnets include FePt, CoPt, FePd, NdFeB, and SmCo, which contain either precious noble metals or rare-earth elements. These materials are expensive and prone to extreme price fluctuations. An attractive alternative material is L10 FeNi, which is a metastable high anisotropy phase in a face-centered tetragonal crystal structure. It is conventionally formed by neutron bombardment, but the process is slow and impractical. Researchers at the University of California, Davis have developed an innovative synthesis approach to achieve high anisotropy FeNi by combining physical vapor deposition via atomic layer sputtering and high speed RTA. This FeNi synthesis contains only common earth-abundant elements, thus substantially reducing real costs and the economic uncertainties therein. This synthesis approach leads to stable L10 FeNi films with an anisotropy of >106 erg/cm3, substantially higher than the cubic A1 phase, and a high Curie temperature.


其他

Additional Technologies by these Inventors


Tech ID/UC Case

27099/2016-822-0


Related Cases

2016-822-0


国家/地区

美国

欲了解更多信息,请点击 这里
Business of IP Asia Forum
桌面版