亚洲知识产权资讯网为知识产权业界提供一个一站式网上交易平台,协助业界发掘知识产权贸易商机,并与环球知识产权业界建立联系。无论你是知识产权拥有者正在出售您的知识产权,或是制造商需要购买技术以提高操作效能,又或是知识产权配套服务供应商,你将会从本网站发掘到有用的知识产权贸易资讯。

Online Corrective Boosting

总结
Lead Inventors: Raphael A PelossofProblem or Unmet Need:Classification algorithms are widely used in modern technology, particularly in search algorithms, object recognition, and data mining applications. Due to the expansive amount of data in the world which is increasingly accessible in a continuous, real-time manner, there is an important need for classification algorithms that are highly efficient, real-time, and accurate. Current classification algorithms in particular are hampered by high memory loads, need for offline training on datasets, and long processing times. Development of algorithms which can classify data in a real-time, low memory load manner is highly applicable to classification technology such as face recognition, optical character recognition, language processing, and other machine learning technologies.The technology presented offers a novel machine learning algorithm which is able to offer a real-time, tunable, and accurate categorization function. Specifically the technology achieves this through the following: The algorithm is based upon a boosting algorithm design in which only weak classifier weights are updated; this allows the algorithm to be run in an online manner. Updates its weightings by minimization of the Adaptive Boosting (AdaBoost) algorithm exponential loss function during incremental training. Increases computational speed dramatically by approximating all the AdaBoost weak classifier weights through a greedy algorithm; this approximation method allows faster classification and the ability to run the algorithm in a online, real-time manner. The extent to which this approximation occurs can be tuned such to achieve higher accuracy rates but requiring higher processing times.For further technical details about the algorithm, please see the inventor's publication Online Coordinate Boosting by Pelossof et al.
技术优势
Efficient Classification System Generalized algorithm able to be adapted to any classification task Real-time capability Low memory usage Tunability -- ability to optimize memory usage versus performance
技术应用
Online classification systems Facial/Object Recognition Optical Character Recognition Natural Language Processing Data mining algorithms
详细技术说明
The technology presented offers a novel machine learning algorithm which is able to offer a real-time, tunable, and accurate categorization function. Specifically the technology achieves this through the following: The algorithm is based upon a...
*Abstract
None
*Inquiry
Calvin Chu Columbia Technology Ventures Tel: (212) 854-8444 Email: TechTransfer@columbia.edu
*IR
M09-028
*Principal Investigation
*Publications
arXiv:0810.4553v1: Online Coordinate Boosting by Pelossof et al.
*Web Links
Online Coordinate Boosting: inventor's publication
国家/地区
美国

欲了解更多信息,请点击 这里
移动设备